結果

問題 No.698 ペアでチームを作ろう
ユーザー 高森藍子高森藍子
提出日時 2023-02-26 15:48:23
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 18 ms / 1,000 ms
コード長 19,028 bytes
コンパイル時間 2,405 ms
コンパイル使用メモリ 192,372 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-14 06:22:33
合計ジャッジ時間 3,140 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 5 ms
5,376 KB
testcase_05 AC 16 ms
5,376 KB
testcase_06 AC 17 ms
5,376 KB
testcase_07 AC 17 ms
5,376 KB
testcase_08 AC 18 ms
5,376 KB
testcase_09 AC 17 ms
5,376 KB
testcase_10 AC 17 ms
5,376 KB
testcase_11 AC 18 ms
5,376 KB
testcase_12 AC 17 ms
5,376 KB
testcase_13 AC 18 ms
5,376 KB
testcase_14 AC 17 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define ALL(a) (a).begin(),(a.end())
#define brep(n,hhh) for(int i=n-1;i>=hhh;i--)
#define rep(hhh,n)   for(int i=hhh;i<n;i++)
#define jrep(hhh,n) for(int j=hhh;j<n;j++)
#define krep(hhh,n) for(int k=hhh;k<n;k++)
#define lrep(hhh,n) for(int l=hhh;l<n;l++)
#define rrep(i,n) for(int i=n-1;i>=0;i--)
#define out(n)   cout << n <<endl;
#define sot(A) sort(A.begin(),A.end())
#define rsot(A) sort(A.rbegin(),A.rend())
#define vi vector<int>
#define vb vector<bool>
#define vd vector<double>
#define vld vector<long double>
#define vc vector<char>
#define vs vector<string>
#define vpi vector<pair<int,int>>
#define vvc vector<vector<char>>
#define vvi vector<vector<int>>
#define vvd vector<vector<double>>
#define vvb vector<vector<bool>>
#define vvvi vector<vector<vector<int>>>
#define vvvpi vector<vector<vector<Pi>>>
#define vvpi vector<vector<pair<int,int>>>
#define vvtpi vector<vector<tuple<int,int,int>>>
#define dout(x,y) cout<<x<<" "<<y<<endl;
#define tout(x,y,z) cout<<x<<" "<<y<<" "<<z<<endl;
#define Pi pair<int,int>
#define TPi tuple<int,int,int>
#define TPd tuple<double,int,int>
int MOD1=1000000000+7;
int MOD2=998244353;
int BIG=10000000000000000;
//int BBB=ppow(2,31)-1;
class BIT {
public:
    //データの長さ
    int n;
    //データの格納先
    vector<int> a;
    //コンストラクタ
    BIT(int n):n(n),a(n+1,0){}

    //a[i]にxを加算する
    void add(int i,int x){
        i++;
        if(i==0) return;
        for(int k=i;k<=n;k+=(k & -k)){
            a[k]+=x;
        }
    }

    //a[i]+a[i+1]+…+a[j]を求める
    int sum(int i,int j){
        return sum_sub(j)-sum_sub(i-1);
    }

    //a[0]+a[1]+…+a[i]を求める
    int sum_sub(int i){
        i++;
        int s=0;
        if(i==0) return s;
        for(int k=i;k>0;k-=(k & -k)){
            s+=a[k];
        }
        return s;
    }

    //a[0]+a[1]+…+a[i]>=xとなる最小のiを求める(任意のkでa[k]>=0が必要)
    int lower_bound(int x){
        if(x<=0){
            //xが0以下の場合は該当するものなし→0を返す
            return 0;
        }else{
            int i=0;int r=1;
            //最大としてありうる区間の長さを取得する
            //n以下の最小の二乗のべき(BITで管理する数列の区間で最大のもの)を求める
            while(r<n) r=r<<1;
            //区間の長さは調べるごとに半分になる
            for(int len=r;len>0;len=len>>1) {
                //その区間を採用する場合
                if(i+len<n && a[i+len]<x){
                    x-=a[i+len];
                    i+=len;
                }
            }
            return i;
        }
    }
};
class CR{
public:

    vi fac;
    vi finv;
    vi inv;
    int MOD;
    CR(int N,int M):fac(N+1),finv(N+1),inv(N+1){
        MOD=M;
        fac[0] = fac[1] = 1;
        finv[0] = finv[1] = 1;
        inv[1] = 1;
        for (int i = 2; i <= N; i++){
            fac[i] = fac[i - 1] * i % MOD;
            inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
            finv[i] = finv[i - 1] * inv[i] % MOD;
        }
    }

// 二項係数計算
    long long COM(int n, int k){
        if (n < k) return 0;
        if (n < 0 || k < 0) return 0;
        return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
    }
};
namespace internal {

template <class E> struct csr {
    std::vector<int> start;
    std::vector<E> elist;
    csr(int n, const std::vector<std::pair<int, E>>& edges)
        : start(n + 1), elist(edges.size()) {
        for (auto e : edges) {
            start[e.first + 1]++;
        }
        for (int i = 1; i <= n; i++) {
            start[i] += start[i - 1];
        }
        auto counter = start;
        for (auto e : edges) {
            elist[counter[e.first]++] = e.second;
        }
    }
};

// Reference:
// R. Tarjan,
// Depth-First Search and Linear Graph Algorithms
struct scc_graph {
  public:
    scc_graph(int n) : _n(n) {}

    int num_vertices() { return _n; }

    void add_edge(int from, int to) { edges.push_back({from, {to}}); }

    // @return pair of (# of scc, scc id)
    std::pair<int, std::vector<int>> scc_ids() {
        auto g = csr<edge>(_n, edges);
        int now_ord = 0, group_num = 0;
        std::vector<int> visited, low(_n), ord(_n, -1), ids(_n);
        visited.reserve(_n);
        auto dfs = [&](auto self, int v) -> void {
            low[v] = ord[v] = now_ord++;
            visited.push_back(v);
            for (int i = g.start[v]; i < g.start[v + 1]; i++) {
                auto to = g.elist[i].to;
                if (ord[to] == -1) {
                    self(self, to);
                    low[v] = std::min(low[v], low[to]);
                } else {
                    low[v] = std::min(low[v], ord[to]);
                }
            }
            if (low[v] == ord[v]) {
                while (true) {
                    int u = visited.back();
                    visited.pop_back();
                    ord[u] = _n;
                    ids[u] = group_num;
                    if (u == v) break;
                }
                group_num++;
            }
        };
        for (int i = 0; i < _n; i++) {
            if (ord[i] == -1) dfs(dfs, i);
        }
        for (auto& x : ids) {
            x = group_num - 1 - x;
        }
        return {group_num, ids};
    }

    std::vector<std::vector<int>> scc() {
        auto ids = scc_ids();
        int group_num = ids.first;
        std::vector<int> counts(group_num);
        for (auto x : ids.second) counts[x]++;
        std::vector<std::vector<int>> groups(ids.first);
        for (int i = 0; i < group_num; i++) {
            groups[i].reserve(counts[i]);
        }
        for (int i = 0; i < _n; i++) {
            groups[ids.second[i]].push_back(i);
        }
        return groups;
    }

  private:
    int _n;
    struct edge {
        int to;
    };
    std::vector<std::pair<int, edge>> edges;
};

} 
struct scc_graph {
  public:
    scc_graph() : internal(0) {}
    scc_graph(int n) : internal(n) {}

    void add_edge(int from, int to) {
        int n = internal.num_vertices();
        assert(0 <= from && from < n);
        assert(0 <= to && to < n);
        internal.add_edge(from, to);
    }

    std::vector<std::vector<int>> scc() { return internal.scc(); }

  private:
    internal::scc_graph internal;
};
void conf(vi &A){
    for(int i:A){
        cout<<i<<' ';
    }
    cout<<endl;
}
void conf(vvi A){
    rep(0,A.size()){
        jrep(0,A[i].size()){
            cout<<A[i][j]<<" ";
        }
        cout<<endl;
    }
}
void conf(vvpi A){
    rep(0,A.size()){
        jrep(0,A[i].size()){
            cout<<"("<<A[i][j].first<<" "<<A[i][j].second<<")"<<" ";
        }
        cout<<endl;
    }
}
void conf(vpi A){
    rep(0,A.size()){
        cout <<'('<< A[i].first <<" "<<A[i].second<<')'<<" ";
    }
    cout<<endl;
}
int max(int a,int b){
    if(a>b)return a;
    else return b;
}
int min(int a,int b){
    if(a>b)return b;
    else return a;
}

int modpow(int x,int n,int mod){
    int res=1;
    while(n>0){
        int l=x%mod;
        if(n&1)res=(res%mod)*l%mod;
        x=l*l%mod;
        n>>=1;
    }
    return res;
}//高速べき乗(modの値を返す)、計算量log(N)

int ppow(int x,int n){
    int res=1;
    while(n>0){
        if(n&1)res=res*x;
        x=x*x;
        n>>=1;
    }
    return res;
}//高速べき乗、計算量log(N)
int modinv(int a, int m) {
    int b = m, u = 1, v = 0;
    while (b) {
        int t = a / b;
        a -= t * b; swap(a, b);
        u -= t * v; swap(u, v);
    }
    u %= m; 
    if (u < 0) u += m;
    return u;
}//拡張EuClidの互除法、逆元を返す,a,mが互いに素ならOK、mがMOD,log(a);
vi smallest_prime_factors(int n) {
    vi spf(n + 1);
    for (int i = 0; i <= n; i++) spf[i] = i;


    for (int i = 2; i * i <= n; i++) {
        if (spf[i] == i) {
            for (int j = i * i; j <= n; j += i) {
                if (spf[j] == j) {
                    spf[j] = i;
                }
            }
        }
    }

    return spf;
}
vector<int> enumdiv(int n) { 
    vector<int> S;
    for (int i = 1; 1LL*i*i <= n; i++) if (n%i == 0) { S.push_back(i); if (i*i != n) S.push_back(n / i); }
    sort(S.begin(), S.end());
    return S;
}//与えられた1つの数の約数をvectorで昇順で返す(重複なし),計算量√N

vi soinsu(int N){
    vi T;
    int n=N;
    int k=2;
    while(k*k<=n){
        if(N%k==0){
            N=N/k;
            T.push_back(k);
        }
        else{
            k++;
        }
    }
    if(N!=1)T.push_back(N);
    if(T.size()==0){
        T.push_back(n);
    }
    return T;
}//素因数分解した結果をviで返す(sort済み),O(√N)
int legendre(int N,int k){
    int ans=0;
    int K=k;
    while(N>=K){
        ans+=N/K;
        K*=k;
    }
    return ans;
}//N!がkで何回割ることが出来るか

vb Eratosthenes(int N){
    vb IsPrime(N+1,true);
    IsPrime[0] = false; // 0は素数ではない
    IsPrime[1] = false; // 1は素数ではない

    for(int i=2; i*i<=N; ++i) // 0からsqrt(max)まで調べる
        if(IsPrime[i]) // iが素数ならば
            for(int j=2; i*j<=N; ++j) // (max以下の)iの倍数は
                IsPrime[i*j] = false;
    return IsPrime;
}//Nまでの数が素数か素数でないかを返す、計算量nloglogn



/*int clk=1;
void clkdfs(vvi &A,vpi &B,int v){
    if(seen[v])return ;
    seen[v] = true; // v を訪問済にする
    B[v].first=clk;
    clk++;
    // v から行ける各頂点 next_v について
    for (int next_v:A[v]) { 
        if (seen[next_v-1]) continue; // next_v が探索済だったらスルー
        clkdfs(A,B,next_v-1); // 再帰的に探索
    }
    B[v].second=clk;
    clk++;
}*/
/*int W,H;
void dfs(vvi &A,int h,int w){
    //if(A[h][w]==0)return;
    A[h][w] =0; // v を訪問済にする
    vi dh={-1,-1,-1,0,0,1,1,1};
    vi dw={-1,0,1,-1,1,-1,0,1};
    rep(0,8){
        if(h+dh[i]>=0&&h+dh[i]<=H-1&&w+dw[i]>=0&&w+dw[i]<=W-1&&A[h+dh[i]][w+dw[i]]==1){
            //dout(h+dh[i],w+dw[i]);
            dfs(A,h+dh[i],w+dw[i]); // 再帰的に探索
             
        }
    }
 
}*/

int lgcd(int A, int B){
    int a,b,C;
    while (A!=0 && B!=0){
        if (A>B){
            a=A/B;
            A=A-B*a;
        }else{ 
            b=B/A;
            B=B-A*b;
    }
    }
    C=max(A,B);
    return C;
}
void YN(bool A){
    if(A){
        out("Yes");
    }else{
        out("No");
    }
}
double max(double a,double b){
    if(a>b){
        return a;
    }else{
        return b;
    }
}
double min(double a,double b){
    if(a>b){
        return b;
    }else{
        return a;
    }
}

/*int H,W;
void dfs(vs &G,int h,int w,vvi &seen){
    vi dh={1,0,-1,0};
    vi dw={0,1,0,-1};
    rep(0,4){
        if(h+dh[i]>=0&&h+dh[i]<=H-1&&w+dw[i]>=0&&w+dw[i]<=W-1&&G[h+dh[i]][w+dw[i]]=='.'&&seen[h+dh[i]][w+dw[i]]==1000000000){
            seen[h+dh[i]][w+dw[i]]=seen[h][w]+1;
            dfs(G,h+dh[i],w+dw[i],seen); // 再帰的に探索
        }
    }
    //A[h][w]=1;
}*/
vvi mat_mul(vvi &a, vvi &b,int MOD) {
  vvi res(a.size(), vi(b[0].size()));
  for (int i = 0; i < a.size(); i++) {
    for (int j = 0; j < b[0].size(); j++) {
      for (int k = 0; k < b.size(); k++) {
        (res[i][j] += a[i][k] * b[k][j]) %= MOD;
      }
    }
  }
  return res;
}
vvi mat_pow(vvi a, int n,int MOD) {
  vvi res(a.size(), vi(a.size()));
  // 単位行列で初期化
  for (int i = 0; i < a.size(); i++)
    res[i][i] = 1;
  // 繰り返し二乗法
  while (n > 0) {
    if (n & 1) res = mat_mul(a, res,MOD);
    a = mat_mul(a, a,MOD);
    n >>= 1;
  }
  return res;
}
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
  public:
    segtree() : segtree(0) {}
    segtree(int n) : segtree(std::vector<S>(n, e())) {}
    segtree(const std::vector<S>& v) : _n((v.size())) {
        log = ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};


struct dsu {
  public:
    dsu() : _n(0) {}
    dsu(int n) : _n(n), parent_or_size(n, -1) {}

    int merge(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool same(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
            std::remove_if(result.begin(), result.end(),
                           [&](const std::vector<int>& v) { return v.empty(); }),
            result.end());
        return result;
    }

  private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

vi dikstra(int s,int V,vector<vector<pair<int,int>>> &G){
    vi d(V,BIG);
    priority_queue<Pi,vector<Pi>,greater<Pi>> que;
    d[s]=0;
    que.push(Pi(0,s));//Pi(距離、向かう頂点)
    
    while(!que.empty()){
        Pi p=que.top();que.pop();
        int v=p.second;
        if(d[v]<p.first)continue;
        rep(0,G[v].size()){
            int a=G[v][i].second;
            int b=G[v][i].first;
            if(d[a]>d[v]+b){
                d[a]=d[v]+b;
                que.push(Pi(d[a],a));
            }
        }
    }
    return d;
    
}//始点は0start
Pi op(Pi a, Pi b) {
    return max(a, b);
}

Pi e() {
    return Pi(-2,-1);
}
//int target;

//bool f(int v) { return v >= target; }

/*int flg=-1;
bool gg=false;
void loopdfs(int a,int v,vvi &G,vb &seen,vi &loop){
    if(seen[a])return ;
    seen[a]=true;
    //out(a);
    for (auto nv : G[a]) { 
        if(nv==v)continue;
        if(gg)continue;
        if (seen[nv]){
            flg=nv;
            gg=true;
            break;
        }
        loopdfs(nv,a,G,seen,loop); 
    }
    if(gg){
        loop.push_back(a);
    }
    if(flg==a)gg=false;
}*/
//bool flag=false;
void kdfs(vvi &G,vi &seen,int v,int d){
    if(seen[v]!=-1)return ;
    seen[v] = d; // v を訪問済にするて
    for (int nv:G[v]) { 
        if (seen[nv]!=-1) continue; // next_v が探索済だったらスルー
        kdfs(G,seen,nv,(d+1)%2); // 再帰的に探索
    }
    
}

/*void dfs(vs &S,int h,int w,int px,int py,vvi &dp,int &ans){
    if(dp[h][w]==-1)return;
    if(px==-1)dp[h][w]=0;
    if(px!=-1){
        dp[h][w] =0; 
    }    // v を訪問済にする
    vi dh={1,0};
    vi dw={0,1};
    rep(0,8){
        if(h+dh[i]>=0&&h+dh[i]<=H-1&&w+dw[i]>=0&&w+dw[i]<=W-1&&A[h+dh[i]][w+dw[i]]==1){
            //dout(h+dh[i],w+dw[i]);
            dfs(A,h+dh[i],w+dw[i]); // 再帰的に探索
             
        }
    }
 
}*/
int rec(vi &A,int N,int bit,vi &dp){
    if (dp[bit]!=-1){
        //out(bit);
        return dp[bit];
    }
    vi F;
    rep(0,N){
        if((1<<i)&bit)F.push_back(i);
    }
    //conf(F)
    if(F.size()==2){
        int k=A[F[0]];
        k^=A[F[1]];
        return dp[bit]=k;
    }
    
    int res = 0;
    //int prev_bit = bit & ~(1<<v);
    rep(0,N){
        jrep(0,N){
            if (!((bit & (1<<i))&&(bit&(1<<j)))) continue; 
            int prev_bit=bit&(~(1<<i))&(~(1<<j));
            //out(prev_bit);
            if (res < (rec(A,N,prev_bit, dp)+(A[i]^A[j])) ) {
                res = rec(A,N,prev_bit, dp)+(A[i]^A[j]);
            }
        }
    }
    
    return dp[bit] = res; // メモしながらリターン
}
signed main(){
    int N;cin>>N;
    vi A(N);
    rep(0,N){
        cin>>A[i];
    }
    vi dp((1<<N),-1);
    out(rec(A,N,(1<<N)-1,dp));
    //conf(dp);
}



    

    
0