結果
問題 | No.2396 等差二項展開 |
ユーザー | ecottea |
提出日時 | 2023-02-27 02:03:03 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
OLE
|
実行時間 | - |
コード長 | 23,580 bytes |
コンパイル時間 | 5,343 ms |
コンパイル使用メモリ | 290,476 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-10-06 16:32:45 |
合計ジャッジ時間 | 14,949 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,820 KB |
testcase_09 | AC | 2 ms
6,820 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | OLE | - |
testcase_12 | AC | 4 ms
5,248 KB |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | AC | 5 ms
6,820 KB |
testcase_16 | AC | 54 ms
5,248 KB |
testcase_17 | AC | 189 ms
5,248 KB |
testcase_18 | AC | 288 ms
5,248 KB |
testcase_19 | AC | 414 ms
5,248 KB |
testcase_20 | AC | 3 ms
5,248 KB |
testcase_21 | AC | 3 ms
5,248 KB |
testcase_22 | AC | 2 ms
5,248 KB |
testcase_23 | RE | - |
testcase_24 | AC | 284 ms
5,248 KB |
testcase_25 | AC | 248 ms
5,248 KB |
testcase_26 | RE | - |
testcase_27 | RE | - |
testcase_28 | RE | - |
testcase_29 | RE | - |
testcase_30 | RE | - |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // ライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = acos(-1); const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi DY = { 0, 1, 0, -1 }; int INF = 1001001001; ll INFL = 4004004004004004004LL; double EPS = 1e-12; // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x)) #define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x)) #define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去 #define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了 // 汎用関数の定義 template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) // 演算子オーバーロード template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; } template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; } // 手元環境(Visual Studio) #ifdef _MSC_VER #include "local.hpp" // 提出用(gcc) #else inline int popcount(int n) { return __builtin_popcount(n); } inline int popcount(ll n) { return __builtin_popcountll(n); } inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; } inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; } inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; } inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; } #define gcd __gcd #define dump(...) #define dumpel(v) #define dump_list(v) #define dump_list2D(v) #define input_from_file(f) #define output_to_file(f) #define Assert(b) { if (!(b)) while (1) cout << "OLE"; } #endif #endif // 折りたたみ用 #if __has_include(<atcoder/all>) #include <atcoder/all> using namespace atcoder; //using mint = modint1000000007; //using mint = modint998244353; using mint = modint; // mint::set_mod(m); istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; #endif //【階乗など(法が任意)】 /* * Factorial_arbitrary_mod(int m, int n_max) : O(min(m, n_max)) * m を法として,n_max! まで計算可能として初期化する. * * int fact(int n) : O(ω(m) (log n + log m)) * n! mod m を返す. * (ω(m) : m の素因数の種類数) * * int bin(int n, int r) : O(ω(m) (log n + log m)) * nCr mod m を返す. */ struct Factorial_arbitrary_mod { // verify : https://atcoder.jp/contests/arc012/tasks/arc012_4 // n_max! までは計算可能とする. int n_max; // m のもつ素因数の数 int np; // ps[i], ds[i], pds[i] : m の i 番目の素因数,その個数,素数冪 vi ps, ds; vl pds; // fac[i][j] : [1..j] で p[i] の倍数でない数の総積 mod pd[i] vvl fac; // m を法として初期化する. Factorial_arbitrary_mod(int m, int n) : n_max(n) { // m を素因数分解する. for (int p = 2; p * p <= m; p++) { int d = 0, pd = 1; while (m % p == 0) { d++; pd *= p; m /= p; } if (d > 0) { ps.push_back(p); ds.push_back(d); pds.push_back(pd); } } if (m > 1) { ps.push_back(m); ds.push_back(1); pds.push_back(m); } np = sz(ps); // fac[i][j] を前計算する. fac.resize(np); rep(i, np) { int len = (int)min(pds[i], (ll)n_max); fac[i].resize(len + 1); fac[i][0] = 1; repi(j, 1, len) { if (j % ps[i] == 0) fac[i][j] = fac[i][j - 1]; else fac[i][j] = (fac[i][j - 1] * j) % pds[i]; } } } // m の各素因数 p = ps[i] について,ord_p(n!) を pw[i] に格納し, // (n! / p^pw[i]) mod pds[i] を rm[i] に格納する. void factorial_sub(int n_, vi& pw, vl& rm) const { pw = vi(np, 0); rm = vl(np, 1); rep(i, np) { // ルジャンドルの公式を用いて pw = ord_p(n!) を求める. int n = n_; while (n > 0) { int q = n / ps[i]; pw[i] += q; n = q; } // ウィルソンの定理の一般化を利用して rm を求める. n = n_; while (n > 0) { int q = n / (int)pds[i], r = n % (int)pds[i]; rm[i] = (rm[i] * fac[i][r]) % pds[i]; if (q % 2 == 1) rm[i] = (rm[i] * fac[i][pds[i] - 1]) % pds[i]; n /= ps[i]; } } } // n! mod m を返す. int fact(int n) const { Assert(0 <= n && n <= n_max); // n! の情報を得る. vi pw; vl rm; factorial_sub(n, pw, rm); // 情報をまとめて連立合同式を作る. vl rgt(np); rep(i, np) { if (pw[i] >= ds[i]) rgt[i] = 0; else rgt[i] = rm[i] * pow(ps[i], (int)pw[i]); } // 中国剰余定理で連立合同式の解を求める. return (int)crt(rgt, pds).first; } // 二項係数 nCr mod m を返す. int bin(int n, int r) const { Assert(n <= n_max); if (r < 0 || n - r < 0) return 0; // n, r, n-r それぞれの pow および mod を得る. vi pw_n, pw_r, pw_s; vl rm_n, rm_r, rm_s; factorial_sub(n, pw_n, rm_n); factorial_sub(r, pw_r, rm_r); factorial_sub(n - r, pw_s, rm_s); // 情報をまとめて連立合同式を作る. vl rgt(np); rep(i, np) { ll pw = pw_n[i] - pw_r[i] - pw_s[i]; ll rm = rm_n[i]; rm = (rm * inv_mod(rm_r[i], pds[i])) % pds[i]; rm = (rm * inv_mod(rm_s[i], pds[i])) % pds[i]; if (pw >= ds[i]) rgt[i] = 0; else rgt[i] = rm * pow(ps[i], (int)pw); } // 中国剰余定理で連立合同式の解を求める. return (int)crt(rgt, pds).first; } }; //【畳込み】O(n m) /* * a[0..n) と b[0..m) を畳み込んだ数列 c[0..n+m-1) を返す. */ vm naive_convolution(const vm& a, const vm& b) { // verify : https://atcoder.jp/contests/abc214/tasks/abc214_g int n = sz(a), m = sz(b); // c[i] = Σj∈[0..i] a[j] b[i-j] (∀i∈[0..n+m-1)) vm c(n + m - 1); rep(i, n + m - 1) { repi(j, max(i - (m - 1), 0), min(i, n - 1)) { c[i] += a[j] * b[i - j]; } } return c; } //【形式的冪級数】 /* * MFPS() : O(1) * 零多項式 f = 0 で初期化する. * * MFPS(mint c0) : O(1) * 定数多項式 f = c0 で初期化する. * * MFPS(mint c0, int n) : O(n) * n 次未満の項をもつ定数多項式 f = c0 で初期化する. * * MFPS(vm c) : O(n) * f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1) で初期化する. * * set_conv(vm(*CONV)(const vm&, const vm&)) : O(1) * 畳込み用の関数を CONV に設定する. * * c + f, f + c : O(1) f + g : O(n) * f - c : O(1) c - f, f - g, -f : O(n) * c * f, f * c : O(n) f * g : O(n log n) f * g_sp : O(n k)(k : g の項数) * f / c : O(n) f / g : O(n log n) f / g_sp : O(n k)(k : g の項数) * 形式的冪級数としての和,差,積,商の結果を返す. * g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す. * 制約 : 商では g(0) != 0 * * MFPS f.inv(int d) : O(n log n) * 1 / f mod z^d を返す. * 制約 : f(0) != 0 * * MFPS f.quotient(MFPS g) : O(n log n) * MFPS f.reminder(MFPS g) : O(n log n) * pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n) * 多項式としての f を g で割った商,余り,商と余りの組を返す. * 制約 : g の最高次の係数は 0 でない * * int f.deg(), int f.size() : O(1) * 多項式 f の次数[項数]を返す. * * MFPS::monomial(int d) : O(d) * 単項式 z^d を返す. * * mint f.assign(mint c) : O(n) * 多項式 f の不定元 z に c を代入した値を返す. * * f.resize(int d) : O(1) * mod z^d をとる. * * f.resize() : O(n) * 不要な高次の項を削る. * * f >> d, f << d : O(n) * 係数列を d だけ右[左]シフトした多項式を返す. * (右シフトは z^d の乗算,左シフトは z^d で割った商と等価) * * MFPS power_mod(MFPS f, ll d, MFPS g) : O(m log m log d) (m = deg g) * f(z)^d mod g(z) を返す. */ struct MFPS { using SMFPS = vector<pair<int, mint>>; int n; // 係数の個数(次数 + 1) vm c; // 係数列 inline static vm(*CONV)(const vm&, const vm&) = naive_convolution; // 畳込み用の関数 // コンストラクタ(0,定数,係数列で初期化) MFPS() : n(0) {} MFPS(const mint& c0) : n(1), c({ c0 }) {} MFPS(const int& c0) : n(1), c({ mint(c0) }) {} MFPS(const mint& c0, int d) : n(d), c(n) { c[0] = c0; } MFPS(const int& c0, int d) : n(d), c(n) { c[0] = c0; } MFPS(const vm& c_) : n(sz(c_)), c(c_) {} MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; } // 代入 MFPS(const MFPS& f) = default; MFPS& operator=(const MFPS& f) = default; MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; } // 比較 bool operator==(const MFPS& g) const { return c == g.c; } bool operator!=(const MFPS& g) const { return c != g.c; } // アクセス mint const& operator[](int i) const { return c[i]; } mint& operator[](int i) { return c[i]; } // 次数 int deg() const { return n - 1; } int size() const { return n; } static void set_conv(vm(*CONV_)(const vm&, const vm&)) { // verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci CONV = CONV_; } // 加算 MFPS& operator+=(const MFPS& g) { if (n >= g.n) rep(i, g.n) c[i] += g.c[i]; else { rep(i, n) c[i] += g.c[i]; repi(i, n, g.n - 1) c.push_back(g.c[i]); n = g.n; } return *this; } MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; } // 定数加算 MFPS& operator+=(const mint& sc) { if (n == 0) { n = 1; c = { sc }; } else { c[0] += sc; } return *this; } MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; } friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; } MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; } MFPS operator+(const int& sc) const { return MFPS(*this) += sc; } friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; } // 減算 MFPS& operator-=(const MFPS& g) { if (n >= g.n) rep(i, g.n) c[i] -= g.c[i]; else { rep(i, n) c[i] -= g.c[i]; repi(i, n, g.n - 1) c.push_back(-g.c[i]); n = g.n; } return *this; } MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; } // 定数減算 MFPS& operator-=(const mint& sc) { *this += -sc; return *this; } MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; } friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); } MFPS& operator-=(const int& sc) { *this += -sc; return *this; } MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; } friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); } // 加法逆元 MFPS operator-() const { return MFPS(*this) *= -1; } // 定数倍 MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; } MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; } friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; } MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; } MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; } friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; } // 右からの定数除算 MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; } MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; } MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; } MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; } // 積 MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; } MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; } // 除算 MFPS inv(int d) const { // 参考:https://nyaannyaan.github.io/library/fps/formal-power-series.hpp // verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series //【方法】 // 1 / f mod x^d を求めることは, // f g = 1 (mod x^d) // なる g を求めることである. // この d の部分を 1, 2, 4, ..., 2^i と倍々にして求めていく. // // d = 1 のときについては // g = 1 / f[0] (mod x^1) // である. // // 次に, // g = h (mod x^k) // が求まっているとして // g mod x^(2 k) // を求める.最初の式を変形していくことで // g - h = 0 (mod x^k) // ⇒ (g - h)^2 = 0 (mod x^(2 k)) // ⇔ g^2 - 2 g h + h^2 = 0 (mod x^(2 k)) // ⇒ f g^2 - 2 f g h + f h^2 = 0 (mod x^(2 k)) // ⇔ g - 2 h + f h^2 = 0 (mod x^(2 k)) (f g = 1 (mod x^d) より) // ⇔ g = (2 - f h) h (mod x^(2 k)) // を得る. // // この手順を d <= 2^i となる i まで繰り返し,d 次以上の項を削除すればよい. Assert(c[0] != 0); MFPS g(c[0].inv()); for (int k = 1; k < d; k *= 2) { g = (2 - *this * g) * g; g.resize(2 * k); } return g.resize(d); } MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); } MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; } // 余り付き除算 MFPS quotient(const MFPS& g) const { // 参考 : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp // verify : https://judge.yosupo.jp/problem/division_of_polynomials //【方法】 // f(x) = g(x) q(x) + r(x) となる q(x) を求める. // f の次数は n - 1, g の次数は m - 1 とする.(n >= m) // 従って q の次数は n - m,r の次数は m - 2 となる. // // f^R で f の係数列を逆順にした多項式を表す.すなわち // f^R(x) := f(1/x) x^(n-1) // である.他の多項式も同様とする. // // 最初の式で x → 1/x と置き換えると, // f(1/x) = g(1/x) q(1/x) + r(1/x) // ⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1) // ⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1) // ⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1) // ⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1)) // ⇒ q^R(x) = f^R(x) / g^R(x) (mod x^(n-m+1)) // を得る. // // これで q を mod x^(n-m+1) で正しく求めることができることになるが, // q の次数は n - m であったから,q 自身を正しく求めることができた. if (n < g.n) return MFPS(); return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev(); } MFPS reminder(const MFPS& g) const { // verify : https://judge.yosupo.jp/problem/division_of_polynomials return (*this - this->quotient(g) * g).resize(g.n - 1); } pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const { // verify : https://judge.yosupo.jp/problem/division_of_polynomials pair<MFPS, MFPS> res; res.first = this->quotient(g); res.second = (*this - res.first * g).resize(g.n - 1); return res; } // スパース積 MFPS& operator*=(const SMFPS& g) { // g の定数項だけ例外処理 auto it0 = g.begin(); mint g0 = 0; if (it0->first == 0) { g0 = it0->second; it0++; } // 後ろからインライン配る DP repir(i, n - 1, 0) { // 上位項に係数倍して配っていく. for (auto it = it0; it != g.end(); it++) { int j; mint gj; tie(j, gj) = *it; if (i + j >= n) break; c[i + j] += c[i] * gj; } // 定数項は最後に配るか消去しないといけない. c[i] *= g0; } return *this; } MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; } // スパース商 MFPS& operator/=(const SMFPS& g) { // g の定数項だけ例外処理 auto it0 = g.begin(); Assert(it0->first == 0 && it0->second != 0); mint g0_inv = it0->second.inv(); it0++; // 前からインライン配る DP(後ろに累積効果あり) rep(i, n) { // 定数項は最初に配らないといけない. c[i] *= g0_inv; // 上位項に係数倍して配っていく. for (auto it = it0; it != g.end(); it++) { int j; mint gj; tie(j, gj) = *it; if (i + j >= n) break; c[i + j] -= c[i] * gj; } } return *this; } MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; } // 係数反転 MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; } // 単項式 static MFPS monomial(int d) { MFPS mono(0, d + 1); mono[d] = 1; return mono; } // 不要な高次項の除去 MFPS& resize() { // 最高次の係数が非 0 になるまで削る. while (n > 0 && c[n - 1] == 0) { c.pop_back(); n--; } return *this; } // x^d 以上の項を除去する. MFPS& resize(int d) { n = d; c.resize(d); return *this; } // 不定元への代入 mint assign(const mint& x) const { mint val = 0; repir(i, n - 1, 0) val = val * x + c[i]; return val; } // 係数のシフト MFPS& operator>>=(int d) { n += d; c.insert(c.begin(), d, 0); return *this; } MFPS& operator<<=(int d) { n -= d; if (n <= 0) { c.clear(); n = 0; } else c.erase(c.begin(), c.begin() + d); return *this; } MFPS operator>>(int d) const { return MFPS(*this) >>= d; } MFPS operator<<(int d) const { return MFPS(*this) <<= d; } // 累乗の剰余 friend MFPS power_mod(const MFPS& f, ll d, const MFPS& g) { MFPS res(1), pow2(f); while (d > 0) { if (d & 1LL) res = (res * pow2).reminder(g); pow2 = (pow2 * pow2).reminder(g); d /= 2; } return res; } #ifdef _MSC_VER friend ostream& operator<<(ostream& os, const MFPS& f) { if (f.n == 0) os << 0; else { rep(i, f.n) { os << f[i].val() << "z^" << i; if (i < f.n - 1) os << " + "; } } return os; } #endif }; //【線形漸化式の発見】O(n^2) /* * 与えられた数列 a[0..n) に対し,以下の等式を満たす c[0..d) で d を最小とするものを返す: * a[i] = Σj=[0..d) c[j] a[i-1-j] (∀i∈[d..n)) */ vm berlekamp_massey(const vm& a) { // 参考 : https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm // verify : https://judge.yosupo.jp/problem/find_linear_recurrence MFPS S(a), C(1), B(1); int N = sz(a), m = 1; mint b = 1; rep(n, N) { mint d = 0; rep(i, sz(C)) d += C[i] * S[n - i]; if (d == 0) { m++; } else if (2 * C.deg() <= n) { MFPS T(C); C -= d * b.inv() * (B >> m); B = T; b = d; m = 1; } else { C -= d * b.inv() * (B >> m); m++; } } return (-C << 1).c; } //【展開係数】O(n log n log d) /* * 有理式 f(x)/g(x) を形式的冪級数に展開したときの x^d の係数を返す. * * 制約 : deg f < deg g, g[0] != 0 */ mint bostan_mori(const MFPS& f, const MFPS& g, ll d) { // 参考 : http://q.c.titech.ac.jp/docs/progs/polynomial_division.html // verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci //【方法】 // 分母分子に g(-x) を掛けることにより // f(x) / g(x) = f(x) g(-x) / g(x) g(-x) // を得る.ここで g(x) g(-x) は偶多項式なので // g(x) g(-x) = e(x^2) // と表すことができる. // // 分子について // f(x) g(-x) = E(x^2) + x O(x^2) // というように偶多項式部分と奇多項式部分に分けると,d が偶数のときは // [x^d] f(x) g(-x) / g(x) g(-x) // = [x^d] E(x^2) / e(x^2) // = [x^(d/2)] E(x) / e(x) // となり,d が奇数のときは // [x^d] f(x) g(-x) / g(x) g(-x) // = [x^d] x O(x^2) / e(x^2) // = [x^((d-1)/2)] O(x) / e(x) // となる. // // これを繰り返せば d を半分ずつに減らしていくことができる. Assert(g.n >= 1 && g[0] != 0); // d = 0 のときは定数項を返す. if (d == 0) return f[0] / g[0]; // f2(x) = f(x) g(-x), g2(x) = g(x) g(-x) を求める. MFPS f2, g2 = g; rep(i, g2.n) if (i % 2 == 1) g2[i] *= -1; f2 = f * g2; g2 *= g; // f3(x) = E(x) or O(x), g3(x) = e(x) を求める. MFPS f3, g3; if (d % 2 == 0) rep(i, (f2.n + 1) / 2) f3.c.push_back(f2[2 * i]); else rep(i, f2.n / 2) f3.c.push_back(f2[2 * i + 1]); f3.n = sz(f3.c); rep(i, g.n) g3.c.push_back(g2[2 * i]); g3.n = sz(g3.c); // d を半分にして再帰を回す. return bostan_mori(f3, g3, d / 2); } //【線形漸化式】O(d log d log n) /* * 初項 a[0..d) と漸化式 a[i] = Σj=[0..d) c[j]a[i-1-j] で定義される * 数列 a について,a[n] の値を返す. * * 利用:【展開係数】 */ mint linearly_recurrent_sequence(const vm& a, const vm& c, ll n) { // verify : https://judge.yosupo.jp/problem/kth_term_of_linearly_recurrent_sequence int d = sz(a); MFPS A(a), C(c); MFPS Dnm = 1 - (C >> 1); MFPS Num = (Dnm * A).resize(d); return bostan_mori(Num, Dnm, n); } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); ll N, M; int L, K, B; cin >> N >> M >> L >> K >> B; mint::set_mod(B); Factorial_arbitrary_mod fam(B, 2 * L); vm powM(2 * L + 1); powM[0] = 1; rep(i, 2 * L) powM[i + 1] = powM[i] * M; // a[i] : N = i としたときの解(愚直に求める) vm a(2 * L); rep(i, 2 * L) { for (int n = 0; L * n + K <= i; n++) { a[i] += fam.bin(i, L * n + K) * powM[n]; } } dump(a); // a が満たす線形漸化式を発見する. auto c = berlekamp_massey(a); int d = sz(c); dump(c); // 初項 a と線形漸化式の係数 c を渡し,第 N 項を求める. a.resize(d); mint res = linearly_recurrent_sequence(a, c, N); cout << res << endl; }