結果
| 問題 |
No.2396 等差二項展開
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-02-27 02:20:19 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 24,047 bytes |
| コンパイル時間 | 4,279 ms |
| コンパイル使用メモリ | 277,688 KB |
| 最終ジャッジ日時 | 2025-02-10 23:49:34 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 25 RE * 6 |
ソースコード
#ifndef HIDDEN_IN_VS // 折りたたみ用
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;
// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004004004004004LL;
double EPS = 1e-12;
// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
// 手元環境(Visual Studio)
#ifdef _MSC_VER
#include "local.hpp"
// 提出用(gcc)
#else
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_list2D(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
#endif // 折りたたみ用
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
//using mint = modint1000000007;
//using mint = modint998244353;
using mint = modint; // mint::set_mod(m);
istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
#endif
//【階乗など(法が任意)】
/*
* Factorial_arbitrary_mod(int m, int n_max) : O(min(m, n_max))
* m を法として,n_max! まで計算可能として初期化する.
*
* int fact(int n) : O(ω(m) (log n + log m))
* n! mod m を返す.
* (ω(m) : m の素因数の種類数)
*
* int bin(int n, int r) : O(ω(m) (log n + log m))
* nCr mod m を返す.
*/
struct Factorial_arbitrary_mod {
// verify : https://atcoder.jp/contests/arc012/tasks/arc012_4
// n_max! までは計算可能とする.
int n_max;
// m のもつ素因数の数
int np;
// ps[i], ds[i], pds[i] : m の i 番目の素因数,その個数,素数冪
vi ps, ds; vl pds;
// fac[i][j] : [1..j] で p[i] の倍数でない数の総積 mod pd[i]
vvl fac;
// m を法として初期化する.
Factorial_arbitrary_mod(int m, int n) : n_max(n) {
// m を素因数分解する.
for (int p = 2; p * p <= m; p++) {
int d = 0, pd = 1;
while (m % p == 0) {
d++;
pd *= p;
m /= p;
}
if (d > 0) {
ps.push_back(p);
ds.push_back(d);
pds.push_back(pd);
}
}
if (m > 1) {
ps.push_back(m);
ds.push_back(1);
pds.push_back(m);
}
np = sz(ps);
// fac[i][j] を前計算する.
fac.resize(np);
rep(i, np) {
int len = (int)min(pds[i], (ll)n_max);
fac[i].resize(len + 1);
fac[i][0] = 1;
repi(j, 1, len) {
if (j % ps[i] == 0) fac[i][j] = fac[i][j - 1];
else fac[i][j] = (fac[i][j - 1] * j) % pds[i];
}
}
}
// m の各素因数 p = ps[i] について,ord_p(n!) を pw[i] に格納し,
// (n! / p^pw[i]) mod pds[i] を rm[i] に格納する.
void factorial_sub(int n_, vi& pw, vl& rm) const {
pw = vi(np, 0); rm = vl(np, 1);
rep(i, np) {
// ルジャンドルの公式を用いて pw = ord_p(n!) を求める.
int n = n_;
while (n > 0) {
int q = n / ps[i];
pw[i] += q;
n = q;
}
// ウィルソンの定理の一般化を利用して rm を求める.
n = n_;
while (n > 0) {
int q = n / (int)pds[i], r = n % (int)pds[i];
rm[i] = (rm[i] * fac[i][r]) % pds[i];
if (q % 2 == 1) rm[i] = (rm[i] * fac[i][pds[i] - 1]) % pds[i];
n /= ps[i];
}
}
}
// n! mod m を返す.
int fact(int n) const {
Assert(0 <= n && n <= n_max);
// n! の情報を得る.
vi pw; vl rm;
factorial_sub(n, pw, rm);
// 情報をまとめて連立合同式を作る.
vl rgt(np);
rep(i, np) {
if (pw[i] >= ds[i]) rgt[i] = 0;
else rgt[i] = rm[i] * pow(ps[i], (int)pw[i]);
}
// 中国剰余定理で連立合同式の解を求める.
return (int)crt(rgt, pds).first;
}
// 二項係数 nCr mod m を返す.
int bin(int n, int r) const {
Assert(n <= n_max);
if (r < 0 || n - r < 0) return 0;
// n, r, n-r それぞれの pow および mod を得る.
vi pw_n, pw_r, pw_s; vl rm_n, rm_r, rm_s;
factorial_sub(n, pw_n, rm_n);
factorial_sub(r, pw_r, rm_r);
factorial_sub(n - r, pw_s, rm_s);
// 情報をまとめて連立合同式を作る.
vl rgt(np);
rep(i, np) {
ll pw = pw_n[i] - pw_r[i] - pw_s[i];
ll rm = rm_n[i];
rm = (rm * inv_mod(rm_r[i], pds[i])) % pds[i];
rm = (rm * inv_mod(rm_s[i], pds[i])) % pds[i];
if (pw >= ds[i]) rgt[i] = 0;
else rgt[i] = rm * pow(ps[i], (int)pw);
}
// 中国剰余定理で連立合同式の解を求める.
return (int)crt(rgt, pds).first;
}
};
//【畳込み】O(n m)
/*
* a[0..n) と b[0..m) を畳み込んだ数列 c[0..n+m-1) を返す.
*/
vm naive_convolution(const vm& a, const vm& b) {
// verify : https://atcoder.jp/contests/abc214/tasks/abc214_g
int n = sz(a), m = sz(b);
// c[i] = Σj∈[0..i] a[j] b[i-j] (∀i∈[0..n+m-1))
vm c(n + m - 1);
rep(i, n + m - 1) {
repi(j, max(i - (m - 1), 0), min(i, n - 1)) {
c[i] += a[j] * b[i - j];
}
}
return c;
}
//【形式的冪級数】
/*
* MFPS() : O(1)
* 零多項式 f = 0 で初期化する.
*
* MFPS(mint c0) : O(1)
* 定数多項式 f = c0 で初期化する.
*
* MFPS(mint c0, int n) : O(n)
* n 次未満の項をもつ定数多項式 f = c0 で初期化する.
*
* MFPS(vm c) : O(n)
* f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1) で初期化する.
*
* set_conv(vm(*CONV)(const vm&, const vm&)) : O(1)
* 畳込み用の関数を CONV に設定する.
*
* c + f, f + c : O(1) f + g : O(n)
* f - c : O(1) c - f, f - g, -f : O(n)
* c * f, f * c : O(n) f * g : O(n log n) f * g_sp : O(n k)(k : g の項数)
* f / c : O(n) f / g : O(n log n) f / g_sp : O(n k)(k : g の項数)
* 形式的冪級数としての和,差,積,商の結果を返す.
* g_sp はスパース多項式であり,{次数, 係数} の次数昇順の組の vector で表す.
* 制約 : 商では g(0) != 0
*
* MFPS f.inv(int d) : O(n log n)
* 1 / f mod z^d を返す.
* 制約 : f(0) != 0
*
* MFPS f.quotient(MFPS g) : O(n log n)
* MFPS f.reminder(MFPS g) : O(n log n)
* pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n)
* 多項式としての f を g で割った商,余り,商と余りの組を返す.
* 制約 : g の最高次の係数は 0 でない
*
* int f.deg(), int f.size() : O(1)
* 多項式 f の次数[項数]を返す.
*
* MFPS::monomial(int d) : O(d)
* 単項式 z^d を返す.
*
* mint f.assign(mint c) : O(n)
* 多項式 f の不定元 z に c を代入した値を返す.
*
* f.resize(int d) : O(1)
* mod z^d をとる.
*
* f.resize() : O(n)
* 不要な高次の項を削る.
*
* f >> d, f << d : O(n)
* 係数列を d だけ右[左]シフトした多項式を返す.
* (右シフトは z^d の乗算,左シフトは z^d で割った商と等価)
*
* MFPS power_mod(MFPS f, ll d, MFPS g) : O(m log m log d) (m = deg g)
* f(z)^d mod g(z) を返す.
*/
struct MFPS {
using SMFPS = vector<pair<int, mint>>;
int n; // 係数の個数(次数 + 1)
vm c; // 係数列
inline static vm(*CONV)(const vm&, const vm&) = naive_convolution; // 畳込み用の関数
// コンストラクタ(0,定数,係数列で初期化)
MFPS() : n(0) {}
MFPS(const mint& c0) : n(1), c({ c0 }) {}
MFPS(const int& c0) : n(1), c({ mint(c0) }) {}
MFPS(const mint& c0, int d) : n(d), c(n) { c[0] = c0; }
MFPS(const int& c0, int d) : n(d), c(n) { c[0] = c0; }
MFPS(const vm& c_) : n(sz(c_)), c(c_) {}
MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; }
// 代入
MFPS(const MFPS& f) = default;
MFPS& operator=(const MFPS& f) = default;
MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; }
// 比較
bool operator==(const MFPS& g) const { return c == g.c; }
bool operator!=(const MFPS& g) const { return c != g.c; }
// アクセス
mint const& operator[](int i) const { return c[i]; }
mint& operator[](int i) { return c[i]; }
// 次数
int deg() const { return n - 1; }
int size() const { return n; }
static void set_conv(vm(*CONV_)(const vm&, const vm&)) {
// verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci
CONV = CONV_;
}
// 加算
MFPS& operator+=(const MFPS& g) {
if (n >= g.n) rep(i, g.n) c[i] += g.c[i];
else {
rep(i, n) c[i] += g.c[i];
repi(i, n, g.n - 1) c.push_back(g.c[i]);
n = g.n;
}
return *this;
}
MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; }
// 定数加算
MFPS& operator+=(const mint& sc) {
if (n == 0) { n = 1; c = { sc }; }
else { c[0] += sc; }
return *this;
}
MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; }
friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; }
MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; }
MFPS operator+(const int& sc) const { return MFPS(*this) += sc; }
friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; }
// 減算
MFPS& operator-=(const MFPS& g) {
if (n >= g.n) rep(i, g.n) c[i] -= g.c[i];
else {
rep(i, n) c[i] -= g.c[i];
repi(i, n, g.n - 1) c.push_back(-g.c[i]);
n = g.n;
}
return *this;
}
MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; }
// 定数減算
MFPS& operator-=(const mint& sc) { *this += -sc; return *this; }
MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; }
friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); }
MFPS& operator-=(const int& sc) { *this += -sc; return *this; }
MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; }
friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); }
// 加法逆元
MFPS operator-() const { return MFPS(*this) *= -1; }
// 定数倍
MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; }
MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; }
friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; }
MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; }
MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; }
friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; }
// 右からの定数除算
MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; }
MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; }
MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; }
MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; }
// 積
MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; }
MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; }
// 除算
MFPS inv(int d) const {
// 参考:https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
// verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series
//【方法】
// 1 / f mod x^d を求めることは,
// f g = 1 (mod x^d)
// なる g を求めることである.
// この d の部分を 1, 2, 4, ..., 2^i と倍々にして求めていく.
//
// d = 1 のときについては
// g = 1 / f[0] (mod x^1)
// である.
//
// 次に,
// g = h (mod x^k)
// が求まっているとして
// g mod x^(2 k)
// を求める.最初の式を変形していくことで
// g - h = 0 (mod x^k)
// ⇒ (g - h)^2 = 0 (mod x^(2 k))
// ⇔ g^2 - 2 g h + h^2 = 0 (mod x^(2 k))
// ⇒ f g^2 - 2 f g h + f h^2 = 0 (mod x^(2 k))
// ⇔ g - 2 h + f h^2 = 0 (mod x^(2 k)) (f g = 1 (mod x^d) より)
// ⇔ g = (2 - f h) h (mod x^(2 k))
// を得る.
//
// この手順を d <= 2^i となる i まで繰り返し,d 次以上の項を削除すればよい.
Assert(c[0] != 0);
MFPS g(c[0].inv());
for (int k = 1; k < d; k *= 2) {
g = (2 - *this * g) * g;
g.resize(2 * k);
}
return g.resize(d);
}
MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); }
MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; }
// 余り付き除算
MFPS quotient(const MFPS& g) const {
// 参考 : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
//【方法】
// f(x) = g(x) q(x) + r(x) となる q(x) を求める.
// f の次数は n - 1, g の次数は m - 1 とする.(n >= m)
// 従って q の次数は n - m,r の次数は m - 2 となる.
//
// f^R で f の係数列を逆順にした多項式を表す.すなわち
// f^R(x) := f(1/x) x^(n-1)
// である.他の多項式も同様とする.
//
// 最初の式で x → 1/x と置き換えると,
// f(1/x) = g(1/x) q(1/x) + r(1/x)
// ⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1)
// ⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1)
// ⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1)
// ⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1))
// ⇒ q^R(x) = f^R(x) / g^R(x) (mod x^(n-m+1))
// を得る.
//
// これで q を mod x^(n-m+1) で正しく求めることができることになるが,
// q の次数は n - m であったから,q 自身を正しく求めることができた.
if (n < g.n) return MFPS();
return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev();
}
MFPS reminder(const MFPS& g) const {
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
return (*this - this->quotient(g) * g).resize(g.n - 1);
}
pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const {
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
pair<MFPS, MFPS> res;
res.first = this->quotient(g);
res.second = (*this - res.first * g).resize(g.n - 1);
return res;
}
// スパース積
MFPS& operator*=(const SMFPS& g) {
// g の定数項だけ例外処理
auto it0 = g.begin();
mint g0 = 0;
if (it0->first == 0) {
g0 = it0->second;
it0++;
}
// 後ろからインライン配る DP
repir(i, n - 1, 0) {
// 上位項に係数倍して配っていく.
for (auto it = it0; it != g.end(); it++) {
int j; mint gj;
tie(j, gj) = *it;
if (i + j >= n) break;
c[i + j] += c[i] * gj;
}
// 定数項は最後に配るか消去しないといけない.
c[i] *= g0;
}
return *this;
}
MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; }
// スパース商
MFPS& operator/=(const SMFPS& g) {
// g の定数項だけ例外処理
auto it0 = g.begin();
Assert(it0->first == 0 && it0->second != 0);
mint g0_inv = it0->second.inv();
it0++;
// 前からインライン配る DP(後ろに累積効果あり)
rep(i, n) {
// 定数項は最初に配らないといけない.
c[i] *= g0_inv;
// 上位項に係数倍して配っていく.
for (auto it = it0; it != g.end(); it++) {
int j; mint gj;
tie(j, gj) = *it;
if (i + j >= n) break;
c[i + j] -= c[i] * gj;
}
}
return *this;
}
MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; }
// 係数反転
MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; }
// 単項式
static MFPS monomial(int d) {
MFPS mono(0, d + 1);
mono[d] = 1;
return mono;
}
// 不要な高次項の除去
MFPS& resize() {
// 最高次の係数が非 0 になるまで削る.
while (n > 0 && c[n - 1] == 0) {
c.pop_back();
n--;
}
return *this;
}
// x^d 以上の項を除去する.
MFPS& resize(int d) {
n = d;
c.resize(d);
return *this;
}
// 不定元への代入
mint assign(const mint& x) const {
mint val = 0;
repir(i, n - 1, 0) val = val * x + c[i];
return val;
}
// 係数のシフト
MFPS& operator>>=(int d) {
n += d;
c.insert(c.begin(), d, 0);
return *this;
}
MFPS& operator<<=(int d) {
n -= d;
if (n <= 0) { c.clear(); n = 0; }
else c.erase(c.begin(), c.begin() + d);
return *this;
}
MFPS operator>>(int d) const { return MFPS(*this) >>= d; }
MFPS operator<<(int d) const { return MFPS(*this) <<= d; }
// 累乗の剰余
friend MFPS power_mod(const MFPS& f, ll d, const MFPS& g) {
MFPS res(1), pow2(f);
while (d > 0) {
if (d & 1LL) res = (res * pow2).reminder(g);
pow2 = (pow2 * pow2).reminder(g);
d /= 2;
}
return res;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const MFPS& f) {
if (f.n == 0) os << 0;
else {
rep(i, f.n) {
os << f[i].val() << "z^" << i;
if (i < f.n - 1) os << " + ";
}
}
return os;
}
#endif
};
//【線形漸化式の発見】O(n^2)
/*
* 与えられた数列 a[0..n) に対し,以下の等式を満たす c[0..d) で d を最小とするものを返す:
* a[i] = Σj=[0..d) c[j] a[i-1-j] (∀i∈[d..n))
*/
vm berlekamp_massey(const vm& a) {
// 参考 : https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm
// verify : https://judge.yosupo.jp/problem/find_linear_recurrence
MFPS S(a), C(1), B(1);
int N = sz(a), m = 1; mint b = 1;
rep(n, N) {
mint d = 0;
rep(i, sz(C)) d += C[i] * S[n - i];
if (d == 0) {
m++;
}
else if (2 * C.deg() <= n) {
MFPS T(C);
C -= d * b.inv() * (B >> m);
B = T;
b = d;
m = 1;
}
else {
C -= d * b.inv() * (B >> m);
m++;
}
}
return (-C << 1).c;
}
//【展開係数】O(n log n log d)
/*
* 有理式 f(x)/g(x) を形式的冪級数に展開したときの x^d の係数を返す.
*
* 制約 : deg f < deg g, g[0] != 0
*/
mint bostan_mori(const MFPS& f, const MFPS& g, ll d) {
// 参考 : http://q.c.titech.ac.jp/docs/progs/polynomial_division.html
// verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci
//【方法】
// 分母分子に g(-x) を掛けることにより
// f(x) / g(x) = f(x) g(-x) / g(x) g(-x)
// を得る.ここで g(x) g(-x) は偶多項式なので
// g(x) g(-x) = e(x^2)
// と表すことができる.
//
// 分子について
// f(x) g(-x) = E(x^2) + x O(x^2)
// というように偶多項式部分と奇多項式部分に分けると,d が偶数のときは
// [x^d] f(x) g(-x) / g(x) g(-x)
// = [x^d] E(x^2) / e(x^2)
// = [x^(d/2)] E(x) / e(x)
// となり,d が奇数のときは
// [x^d] f(x) g(-x) / g(x) g(-x)
// = [x^d] x O(x^2) / e(x^2)
// = [x^((d-1)/2)] O(x) / e(x)
// となる.
//
// これを繰り返せば d を半分ずつに減らしていくことができる.
Assert(g.n >= 1 && g[0] != 0);
// d = 0 のときは定数項を返す.
if (d == 0) return f[0] / g[0];
// f2(x) = f(x) g(-x), g2(x) = g(x) g(-x) を求める.
MFPS f2, g2 = g;
rep(i, g2.n) if (i % 2 == 1) g2[i] *= -1;
f2 = f * g2;
g2 *= g;
// f3(x) = E(x) or O(x), g3(x) = e(x) を求める.
MFPS f3, g3;
if (d % 2 == 0) rep(i, (f2.n + 1) / 2) f3.c.push_back(f2[2 * i]);
else rep(i, f2.n / 2) f3.c.push_back(f2[2 * i + 1]);
f3.n = sz(f3.c);
rep(i, g.n) g3.c.push_back(g2[2 * i]);
g3.n = sz(g3.c);
// d を半分にして再帰を回す.
return bostan_mori(f3, g3, d / 2);
}
//【線形漸化式】O(d log d log n)
/*
* 初項 a[0..d) と漸化式 a[i] = Σj=[0..d) c[j]a[i-1-j] で定義される
* 数列 a について,a[n] の値を返す.
*
* 利用:【展開係数】
*/
mint linearly_recurrent_sequence(const vm& a, const vm& c, ll n) {
// verify : https://judge.yosupo.jp/problem/kth_term_of_linearly_recurrent_sequence
int d = sz(a);
if (d == 0) return 0;
MFPS A(a), C(c);
MFPS Dnm = 1 - (C >> 1);
MFPS Num = (Dnm * A).resize(d);
return bostan_mori(Num, Dnm, n);
}
int main() {
input_from_file("input.txt");
// output_to_file("output.txt");
ll N, M; int L, K, B;
cin >> N >> M >> L >> K >> B;
// O(B + N) くらいの解法で間に合いそうなら愚直に解く.(この中では除算は使っていない)
if (max((ll)B, N) <= (ll)1e6) {
mint::set_mod(B);
Factorial_arbitrary_mod fam(B, N);
mint res = 0, powM = 1;
for (int n = 0; L * n + K <= N; n++) {
res += fam.bin(N, L * n + K) * powM;
powM *= M;
}
EXIT(res);
}
mint::set_mod(B);
Factorial_arbitrary_mod fam(B, 2 * L);
vm powM(2 * L + 1);
powM[0] = 1;
rep(i, 2 * L) powM[i + 1] = powM[i] * M;
// a[i] : N = i としたときの解(愚直に求める)
vm a(2 * L);
rep(i, 2 * L) {
for (int n = 0; L * n + K <= i; n++) {
a[i] += fam.bin(i, L * n + K) * powM[n];
}
}
dump(a);
// a が満たす線形漸化式を発見する.(この中で除算を使っているので,法が素数でないときやばい)
auto c = berlekamp_massey(a);
int d = sz(c);
dump(c);
// 初項 a と線形漸化式の係数 c を渡し,第 N 項を求める.
a.resize(d);
mint res = linearly_recurrent_sequence(a, c, N);
cout << res << endl;
}