結果
問題 | No.2230 Good Omen of White Lotus |
ユーザー | k1suxu |
提出日時 | 2023-02-28 00:11:01 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 111 ms / 2,000 ms |
コード長 | 10,675 bytes |
コンパイル時間 | 3,147 ms |
コンパイル使用メモリ | 255,484 KB |
実行使用メモリ | 13,568 KB |
最終ジャッジ日時 | 2024-09-15 05:28:44 |
合計ジャッジ時間 | 7,876 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge6 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 6 ms
8,832 KB |
testcase_01 | AC | 6 ms
8,704 KB |
testcase_02 | AC | 6 ms
8,832 KB |
testcase_03 | AC | 6 ms
8,832 KB |
testcase_04 | AC | 6 ms
8,824 KB |
testcase_05 | AC | 6 ms
8,832 KB |
testcase_06 | AC | 6 ms
8,832 KB |
testcase_07 | AC | 6 ms
8,704 KB |
testcase_08 | AC | 6 ms
8,832 KB |
testcase_09 | AC | 6 ms
8,704 KB |
testcase_10 | AC | 6 ms
8,764 KB |
testcase_11 | AC | 6 ms
8,800 KB |
testcase_12 | AC | 6 ms
8,832 KB |
testcase_13 | AC | 6 ms
8,888 KB |
testcase_14 | AC | 41 ms
11,648 KB |
testcase_15 | AC | 6 ms
8,832 KB |
testcase_16 | AC | 58 ms
13,568 KB |
testcase_17 | AC | 59 ms
13,440 KB |
testcase_18 | AC | 58 ms
13,568 KB |
testcase_19 | AC | 58 ms
13,460 KB |
testcase_20 | AC | 10 ms
9,192 KB |
testcase_21 | AC | 7 ms
8,924 KB |
testcase_22 | AC | 10 ms
9,332 KB |
testcase_23 | AC | 11 ms
9,168 KB |
testcase_24 | AC | 6 ms
8,704 KB |
testcase_25 | AC | 6 ms
8,704 KB |
testcase_26 | AC | 6 ms
8,848 KB |
testcase_27 | AC | 54 ms
13,548 KB |
testcase_28 | AC | 61 ms
13,440 KB |
testcase_29 | AC | 65 ms
13,568 KB |
testcase_30 | AC | 71 ms
13,440 KB |
testcase_31 | AC | 71 ms
13,568 KB |
testcase_32 | AC | 67 ms
13,440 KB |
testcase_33 | AC | 111 ms
13,568 KB |
testcase_34 | AC | 111 ms
13,312 KB |
testcase_35 | AC | 110 ms
13,568 KB |
testcase_36 | AC | 109 ms
13,568 KB |
testcase_37 | AC | 109 ms
13,568 KB |
testcase_38 | AC | 111 ms
13,440 KB |
testcase_39 | AC | 110 ms
13,568 KB |
testcase_40 | AC | 35 ms
10,240 KB |
testcase_41 | AC | 33 ms
10,288 KB |
testcase_42 | AC | 71 ms
11,776 KB |
testcase_43 | AC | 9 ms
9,088 KB |
testcase_44 | AC | 95 ms
12,856 KB |
testcase_45 | AC | 38 ms
10,488 KB |
testcase_46 | AC | 59 ms
11,384 KB |
ソースコード
// #pragma GCC target("avx") // #pragma GCC optimize("O3") // #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; #define rep(i,n) for(int i = 0; i < (int)n; i++) #define FOR(n) for(int i = 0; i < (int)n; i++) #define repi(i,a,b) for(int i = (int)a; i < (int)b; i++) #define all(x) x.begin(),x.end() //#define mp make_pair #define vi vector<int> #define vvi vector<vi> #define vvvi vector<vvi> #define vvvvi vector<vvvi> #define pii pair<int,int> #define vpii vector<pair<int,int>> template<typename T> void chmax(T &a, const T &b) {a = (a > b? a : b);} template<typename T> void chmin(T &a, const T &b) {a = (a < b? a : b);} using ll = long long; using ld = long double; using ull = unsigned long long; const ll INF = numeric_limits<long long>::max() / 2; const ld pi = 3.1415926535897932384626433832795028; const ll mod = 998244353; int dx[] = {1, 0, -1, 0, -1, -1, 1, 1}; int dy[] = {0, 1, 0, -1, -1, 1, -1, 1}; #define int long long template<int MOD> struct Modular_Int { int x; Modular_Int() = default; Modular_Int(int x_) : x(x_ >= 0? x_%MOD : (MOD-(-x_)%MOD)%MOD) {} int val() const { return (x%MOD+MOD)%MOD; } int get_mod() const { return MOD; } Modular_Int<MOD>& operator^=(int d) { Modular_Int<MOD> ret(1); int nx = x; while(d) { if(d&1) ret *= nx; (nx *= nx) %= MOD; d >>= 1; } *this = ret; return *this; } Modular_Int<MOD> operator^(int d) const {return Modular_Int<MOD>(*this) ^= d;} Modular_Int<MOD> pow(int d) const {return Modular_Int<MOD>(*this) ^= d;} //use this basically Modular_Int<MOD> inv() const { return Modular_Int<MOD>(*this) ^ (MOD-2); } //only if the module number is not prime //Don't use. This is broken. // Modular_Int<MOD> inv() const { // int a = (x%MOD+MOD)%MOD, b = MOD, u = 1, v = 0; // while(b) { // int t = a/b; // a -= t*b, swap(a, b); // u -= t*v, swap(u, v); // } // return Modular_Int<MOD>(u); // } Modular_Int<MOD>& operator+=(const Modular_Int<MOD> other) { if((x += other.x) >= MOD) x -= MOD; return *this; } Modular_Int<MOD>& operator-=(const Modular_Int<MOD> other) { if((x -= other.x) < 0) x += MOD; return *this; } Modular_Int<MOD>& operator*=(const Modular_Int<MOD> other) { int z = x; z *= other.x; z %= MOD; x = z; if(x < 0) x += MOD; return *this; } Modular_Int<MOD>& operator/=(const Modular_Int<MOD> other) { return *this = *this * other.inv(); } Modular_Int<MOD>& operator++() { x++; if (x == MOD) x = 0; return *this; } Modular_Int<MOD>& operator--() { if (x == 0) x = MOD; x--; return *this; } Modular_Int<MOD> operator+(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) += other;} Modular_Int<MOD> operator-(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) -= other;} Modular_Int<MOD> operator*(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) *= other;} Modular_Int<MOD> operator/(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) /= other;} Modular_Int<MOD>& operator+=(const int other) {Modular_Int<MOD> other_(other); *this += other_; return *this;} Modular_Int<MOD>& operator-=(const int other) {Modular_Int<MOD> other_(other); *this -= other_; return *this;} Modular_Int<MOD>& operator*=(const int other) {Modular_Int<MOD> other_(other); *this *= other_; return *this;} Modular_Int<MOD>& operator/=(const int other) {Modular_Int<MOD> other_(other); *this /= other_; return *this;} Modular_Int<MOD> operator+(const int other) const {return Modular_Int<MOD>(*this) += other;} Modular_Int<MOD> operator-(const int other) const {return Modular_Int<MOD>(*this) -= other;} Modular_Int<MOD> operator*(const int other) const {return Modular_Int<MOD>(*this) *= other;} Modular_Int<MOD> operator/(const int other) const {return Modular_Int<MOD>(*this) /= other;} bool operator==(const Modular_Int<MOD> other) const {return (*this).val() == other.val();} bool operator!=(const Modular_Int<MOD> other) const {return (*this).val() != other.val();} bool operator==(const int other) const {return (*this).val() == other;} bool operator!=(const int other) const {return (*this).val() != other;} Modular_Int<MOD> operator-() const {return Modular_Int<MOD>(0LL)-Modular_Int<MOD>(*this);} //入れ子にしたい // friend constexpr istream& operator>>(istream& is, mint& x) noexcept { // int X; // is >> X; // x = X; // return is; // } // friend constexpr ostream& operator<<(ostream& os, mint& x) { // os << x.val(); // return os; // } }; // const int MOD_VAL = 1e9+7; const int MOD_VAL = 998244353; using mint = Modular_Int<MOD_VAL>; istream& operator>>(istream& is, mint& x) { int X; is >> X; x = X; return is; } ostream& operator<<(ostream& os, mint& x) { os << x.val(); return os; } // istream& operator<<(istream& is, mint &a) { // int x; // is >> x; // a = mint(x); // return is; // } // ostream& operator<<(ostream& os, mint a) { // os << a.val(); // return os; // } // vector<mint> f = {1}, rf = {1}; // void init(int n) { // f.resize(n, 0); // rf.resize(n, 0); // f[0] = 1; // repi(i, 1, n) f[i] = (f[i - 1] * i); // repi(i, 0, n) rf[i] = f[i].inv(); // } // mint P(int n, int k) { // assert(n>=k); // while(n > f.size()-1) { // f.push_back(f.back() * f.size()); // rf.push_back(f.back().inv()); // } // return f[n] * f[n-k]; // } // mint C(int n, int k) { // assert(n>=k); // while(n > f.size()-1) { // f.push_back(f.back() * f.size()); // rf.push_back(f.back().inv()); // } // return f[n]*rf[n-k]*rf[k]; // } // mint H(int n, int k) { // assert(n>=1); // return C(n+k-1, k); // } // mint Cat(int n) { // return C(2*n, n)-C(2*n, n-1); // } namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal template <class S, S (*op)(S, S), S (*e)()> struct segtree { public: segtree() : segtree(0) {} explicit segtree(int n) : segtree(std::vector<S>(n, e())) {} explicit segtree(const std::vector<S>& v) : _n((int)v.size()) { log = internal::ceil_pow2(_n); size = 1 << log; d = std::vector<S>(2 * size, e()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) const { assert(0 <= p && p < _n); return d[p + size]; } S prod(int l, int r) const { assert(0 <= l && l <= r && r <= _n); S sml = e(), smr = e(); l += size; r += size; while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() const { return d[1]; } template <bool (*f)(S)> int max_right(int l) const { return max_right(l, [](S x) { return f(x); }); } template <class F> int max_right(int l, F f) const { assert(0 <= l && l <= _n); assert(f(e())); if (l == _n) return _n; l += size; S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!f(op(sm, d[l]))) { while (l < size) { l = (2 * l); if (f(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template <bool (*f)(S)> int min_left(int r) const { return min_left(r, [](S x) { return f(x); }); } template <class F> int min_left(int r, F f) const { assert(0 <= r && r <= _n); assert(f(e())); if (r == 0) return 0; r += size; S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!f(op(d[r], sm))) { while (r < size) { r = (2 * r + 1); if (f(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; std::vector<S> d; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } }; using S = int; S op(S x, S y) { return max(x, y); } S e() { return 0; } const int N = 200100; void solve() { int h, w, n, p; cin >> h >> w >> n >> p; vi x(n), y(n); FOR(n) cin >> x[i] >> y[i]; vector<int> order(n); iota(all(order), 0); sort(all(order), [&](int i, int j) { if(x[i] != x[j]) return x[i] < x[j]; return y[i] < y[j]; }); segtree<S, op, e> seg(N); for(int i : order) { int cur = seg.get(y[i]); int mx = seg.prod(0, y[i]+1); seg.set(y[i], max(cur, mx)+1); } int many = seg.prod(0, N); mint ans = 1; mint p_inv = mint(p).inv(); ans = (-(p_inv-1)).pow(h+w-3-many)*(-(p_inv*2-1)).pow(many); cout << (-(ans-1)).val() << endl; } signed main() { cin.tie(nullptr); ios::sync_with_stdio(false); solve(); return 0; }