結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
AC2K
|
| 提出日時 | 2023-03-02 19:39:22 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 5,500 bytes |
| コンパイル時間 | 2,217 ms |
| コンパイル使用メモリ | 197,772 KB |
| 最終ジャッジ日時 | 2025-02-11 01:14:37 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 4 WA * 6 |
コンパイルメッセージ
main.test.cpp: In function ‘int main()’: main.test.cpp:77:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] main.test.cpp:80:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
ソースコード
#line 2 "template.hpp"
#include<bits/stdc++.h>
using namespace std;
#define rep(i, N) for(int i=0;i<(N);i++)
#define all(x) (x).begin(),(x).end()
#define popcount(x) __builtin_popcount(x)
using i128=__int128_t;
using ll = long long;
using ld = long double;
using graph = vector<vector<int>>;
using P = pair<int, int>;
constexpr int inf = 1e9;
constexpr ll infl = 1e18;
constexpr ld eps = 1e-6;
constexpr long double pi = acos(-1);
constexpr ll MOD = 1e9 + 7;
constexpr ll MOD2 = 998244353;
constexpr int dx[] = { 1,0,-1,0 };
constexpr int dy[] = { 0,1,0,-1 };
template<class T>inline void chmax(T&x,T y){if(x<y)x=y;}
template<class T>inline void chmin(T&x,T y){if(x>y)x=y;}
#line 2 "math/montgomery.hpp"
class montgomery64 {
using mint = montgomery64;
using i64 = int64_t;
using u64 = uint64_t;
using u128 = __uint128_t;
static u64 mod;
static u64 r;
static u64 n2;
static u64 get_r() {
u64 ret = mod;
for (i64 i = 0; i < 5; ++i) ret *= 2 - mod * ret;
return ret;
}
public:
static void set_mod(u128 m) {
assert(m < (1ll << 63));
assert((m & 1) == 1);
mod = m;
n2 = -u128(m) % m;
r = get_r();
assert(r * mod == 1);
}
protected:
i128 a;
public:
montgomery64() : a(0) {}
template<typename T>
montgomery64(const T& b) : a(reduce((u128(b) + mod)* n2)) {};
private:
template<class T>
static u64 reduce(const T& b) {
return (b + u128(u64(b) * u64(-r)) * mod) >> 64;
}
public:
template<class T>
mint& operator=(const T&rhs){
return (*this) = mint(rhs);
}
mint& operator+=(const mint& b) {
if (i64(a += b.a - 2 * mod) < 0) a += 2 * mod;
return *this;
}
mint& operator-=(const mint& b) {
if (i64(a -= b.a) < 0) a += 2 * mod;
return *this;
}
mint& operator*=(const mint& b) {
a = reduce(u128(a) * b.a);
return *this;
}
mint& operator/=(const mint& b) {
*this *= b.inverse();
return *this;
}
mint operator+(const mint& b) const { return mint(*this) += b; }
mint operator-(const mint& b) const { return mint(*this) -= b; }
mint operator*(const mint& b) const { return mint(*this) *= b; }
mint operator/(const mint& b) const { return mint(*this) /= b; }
bool operator==(const mint& b) const {
return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
}
bool operator!=(const mint& b) const {
return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
}
mint operator-() const { return mint() - mint(*this); }
mint pow(u128 n) const {
mint ret(1), mul(*this);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream& operator<<(ostream& os, const mint& b) {
return os << b.get();
}
friend istream& operator>>(istream& is, mint& b) {
int64_t t;
is >> t;
b = montgomery64(t);
return (is);
}
mint inverse() const { return pow(mod - 2); }
u64 get() const {
u64 ret = reduce(a);
return ret >= mod ? ret - mod : ret;
}
static u64 get_mod() { return mod; }
};
typename montgomery64::u64 montgomery64::mod, montgomery64::r, montgomery64::n2;
/// @brief Montgomery
///by https://nyaannyaan.github.io/library/modint/modint-montgomery64.hpp
#line 3 "main.test.cpp"
namespace fast_prime{
//fast_is_prime
using u64 = uint64_t;
using mint = montgomery64;
namespace miller_rabin{
const vector<u64> bases_int = {2, 7, 61};
const vector<u64> bases_long = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
bool miller_rabin(u64 n, const vector<u64> &bases){
if (mint::get_mod() != n){
mint::set_mod(n);
}
u64 d = n ^ 1uL;
uint q = __builtin_ctz(d);
d >>= q;
mint e = 1, r = n - 1;
for (const auto &a : bases){
if (a == n){
return true;
}
else if (n % a == 0){
return false;
}
i128 pw = mint(a).pow(n).get();
if (pw == 1){
continue;
}
bool is_prime_flag = true;
for (int r = 0; r < q; r++){
pw = mint(a).pow((i128)(1) * d * (1uL << r)).get();
if (pw == n - 1){
is_prime_flag = false;
break;
}
}
if (is_prime_flag){
return false;
}
}
return true;
}
bool is_prime(u64 n){
if (n < 2){
return false;
}
else if (n == 2){
return true;
}
else if (~n & 1uL){
return false;
}
if (n < (1ll << 30)){
return miller_rabin(n, bases_int);
}
else{
return miller_rabin(n, bases_long);
}
}
};
};
using fast_prime::miller_rabin::is_prime;
int main(){
int n;
scanf("%d", &n);
while (n--){
long long x;
scanf("%lld",&x);
printf("%lld %d\n", x, is_prime(x));
}
}
AC2K