結果
問題 | No.2206 Popcount Sum 2 |
ユーザー | t98slider |
提出日時 | 2023-03-02 19:51:14 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 653 ms / 4,000 ms |
コード長 | 3,918 bytes |
コンパイル時間 | 1,534 ms |
コンパイル使用メモリ | 176,068 KB |
実行使用メモリ | 93,184 KB |
最終ジャッジ日時 | 2024-09-17 13:35:47 |
合計ジャッジ時間 | 12,894 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 131 ms
93,184 KB |
testcase_01 | AC | 131 ms
93,184 KB |
testcase_02 | AC | 133 ms
93,184 KB |
testcase_03 | AC | 134 ms
93,184 KB |
testcase_04 | AC | 132 ms
93,056 KB |
testcase_05 | AC | 617 ms
93,184 KB |
testcase_06 | AC | 653 ms
93,184 KB |
testcase_07 | AC | 626 ms
93,184 KB |
testcase_08 | AC | 625 ms
93,184 KB |
testcase_09 | AC | 619 ms
93,056 KB |
testcase_10 | AC | 600 ms
93,184 KB |
testcase_11 | AC | 579 ms
93,056 KB |
testcase_12 | AC | 580 ms
93,184 KB |
testcase_13 | AC | 566 ms
93,184 KB |
testcase_14 | AC | 580 ms
93,184 KB |
testcase_15 | AC | 601 ms
93,184 KB |
testcase_16 | AC | 580 ms
93,184 KB |
testcase_17 | AC | 590 ms
93,056 KB |
testcase_18 | AC | 582 ms
93,184 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; //binom(n, 0) ~ binom(n, r) の和を前計算O(N√N),クエリO(√N)程度で収得する template<class T> struct multipoint_binomial_sum { int N, sqN, M; std::vector<T> fact, inv; std::vector<std::vector<T>> binomial_sum_table; multipoint_binomial_sum(int n) : N(n), fact(n + 1), inv(n + 1) { fact[0] = 1; for(int i = 1; i <= N; i++) fact[i] = i * fact[i - 1]; inv[N] = 1 / fact[N]; for(int i = N; i >= 1; i--) inv[i - 1] = i * inv[i]; sqN = std::max(1, 2 * int(sqrt(N))); M = N / sqN + 1; binomial_sum_table.resize(M); for(int i = 0; i < M; i++){ int n = sqN * i; binomial_sum_table[i].resize(n + 1); binomial_sum_table[i][0] = 1; for(int j = 1; j <= n; j++){ binomial_sum_table[i][j] = binomial_sum_table[i][j - 1] + C(n, j); } } } T C(int n, int r){ if(n < 0 || r < 0 || n < r) return 0; return fact[n] * inv[n - r] * inv[r]; } T sum(int gn, int gr){ int n = gn / sqN, r = std::min(gr, n * sqN); T ans = binomial_sum_table[n][r]; n *= sqN; while(n < gn) ans += ans - C(n++, r); while(r < gr) ans += C(n, ++r); return ans; } }; template<const unsigned int MOD> struct prime_modint { using mint = prime_modint; unsigned int v; prime_modint() : v(0) {} prime_modint(unsigned int a) { a %= MOD; v = a; } prime_modint(unsigned long long a) { a %= MOD; v = a; } prime_modint(int a) { a %= (int)(MOD); if(a < 0)a += MOD; v = a; } prime_modint(long long a) { a %= (int)(MOD); if(a < 0)a += MOD; v = a; } static constexpr int mod() { return MOD; } mint& operator++() {v++; if(v == MOD)v = 0; return *this;} mint& operator--() {if(v == 0)v = MOD; v--; return *this;} mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { v += rhs.v; if(v >= MOD) v -= MOD; return *this; } mint& operator-=(const mint& rhs) { if(v < rhs.v) v += MOD; v -= rhs.v; return *this; } mint& operator*=(const mint& rhs) { v = (unsigned int)((unsigned long long)(v) * rhs.v % MOD); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint r = 1, x = *this; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { assert(v); return pow(MOD - 2); } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return (lhs.v == rhs.v); } friend bool operator!=(const mint& lhs, const mint& rhs) { return (lhs.v != rhs.v); } friend std::ostream& operator << (std::ostream &os, const mint& rhs) noexcept { return os << rhs.v; } }; //using mint = prime_modint<1000000007>; using mint = prime_modint<998244353>; int main(){ ios::sync_with_stdio(false); cin.tie(0); int T; cin >> T; multipoint_binomial_sum<mint> MBS(200000); vector<mint> pow2(200001); pow2[0] = 1; for(int i = 0; i < 200000; i++) pow2[i + 1] = pow2[i] + pow2[i]; while(T--){ int N, M; cin >> N >> M; cout << (pow2[N] - 1) * MBS.sum(N - 1, M - 1) << '\n'; } }