結果
問題 | No.2237 Xor Sum Hoge |
ユーザー | jiangly |
提出日時 | 2023-03-03 22:04:13 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 1,936 ms / 10,000 ms |
コード長 | 12,678 bytes |
コンパイル時間 | 2,288 ms |
コンパイル使用メモリ | 213,464 KB |
実行使用メモリ | 7,872 KB |
最終ジャッジ日時 | 2024-09-17 23:04:27 |
合計ジャッジ時間 | 33,222 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1,713 ms
7,768 KB |
testcase_01 | AC | 9 ms
6,816 KB |
testcase_02 | AC | 5 ms
6,812 KB |
testcase_03 | AC | 9 ms
6,940 KB |
testcase_04 | AC | 9 ms
6,940 KB |
testcase_05 | AC | 18 ms
6,940 KB |
testcase_06 | AC | 9 ms
6,940 KB |
testcase_07 | AC | 10 ms
6,944 KB |
testcase_08 | AC | 19 ms
6,944 KB |
testcase_09 | AC | 18 ms
6,944 KB |
testcase_10 | AC | 18 ms
6,940 KB |
testcase_11 | AC | 362 ms
6,940 KB |
testcase_12 | AC | 805 ms
6,944 KB |
testcase_13 | AC | 1,013 ms
7,756 KB |
testcase_14 | AC | 803 ms
6,940 KB |
testcase_15 | AC | 376 ms
6,940 KB |
testcase_16 | AC | 1,654 ms
7,156 KB |
testcase_17 | AC | 992 ms
7,016 KB |
testcase_18 | AC | 817 ms
6,940 KB |
testcase_19 | AC | 476 ms
6,940 KB |
testcase_20 | AC | 1,642 ms
7,032 KB |
testcase_21 | AC | 1,703 ms
7,544 KB |
testcase_22 | AC | 1,737 ms
7,620 KB |
testcase_23 | AC | 1,717 ms
7,872 KB |
testcase_24 | AC | 1,705 ms
7,732 KB |
testcase_25 | AC | 1,718 ms
7,612 KB |
testcase_26 | AC | 1,697 ms
7,676 KB |
testcase_27 | AC | 1,705 ms
7,684 KB |
testcase_28 | AC | 1,761 ms
7,652 KB |
testcase_29 | AC | 1,936 ms
7,620 KB |
testcase_30 | AC | 1,721 ms
7,756 KB |
testcase_31 | AC | 2 ms
6,944 KB |
testcase_32 | AC | 2 ms
6,944 KB |
testcase_33 | AC | 18 ms
6,940 KB |
testcase_34 | AC | 2 ms
6,944 KB |
ソースコード
#include <bits/stdc++.h> using i64 = long long; template<class T> constexpr T power(T a, i64 b) { T res = 1; for (; b; b /= 2, a *= a) { if (b % 2) { res *= a; } } return res; } template<int P> struct MInt { int x; constexpr MInt() : x{} {} constexpr MInt(i64 x) : x{norm(x % P)} {} constexpr int norm(int x) const { if (x < 0) { x += P; } if (x >= P) { x -= P; } return x; } constexpr int val() const { return x; } explicit constexpr operator int() const { return x; } constexpr MInt operator-() const { MInt res; res.x = norm(P - x); return res; } constexpr MInt inv() const { assert(x != 0); return power(*this, P - 2); } constexpr MInt &operator*=(MInt rhs) { x = 1LL * x * rhs.x % P; return *this; } constexpr MInt &operator+=(MInt rhs) { x = norm(x + rhs.x); return *this; } constexpr MInt &operator-=(MInt rhs) { x = norm(x - rhs.x); return *this; } constexpr MInt &operator/=(MInt rhs) { return *this *= rhs.inv(); } friend constexpr MInt operator*(MInt lhs, MInt rhs) { MInt res = lhs; res *= rhs; return res; } friend constexpr MInt operator+(MInt lhs, MInt rhs) { MInt res = lhs; res += rhs; return res; } friend constexpr MInt operator-(MInt lhs, MInt rhs) { MInt res = lhs; res -= rhs; return res; } friend constexpr MInt operator/(MInt lhs, MInt rhs) { MInt res = lhs; res /= rhs; return res; } friend constexpr std::istream &operator>>(std::istream &is, MInt &a) { i64 v; is >> v; a = MInt(v); return is; } friend constexpr std::ostream &operator<<(std::ostream &os, const MInt &a) { return os << a.val(); } friend constexpr bool operator==(MInt lhs, MInt rhs) { return lhs.val() == rhs.val(); } friend constexpr bool operator!=(MInt lhs, MInt rhs) { return lhs.val() != rhs.val(); } }; template<int V, int P> constexpr MInt<P> CInv = MInt<P>(V).inv(); constexpr int P = 998244353; using Z = MInt<P>; std::vector<int> rev; template<int P> std::vector<MInt<P>> roots{0, 1}; template<int P> constexpr MInt<P> findPrimitiveRoot() { MInt<P> i = 2; int k = __builtin_ctz(P - 1); while (true) { if (power(i, 1 << (k - 1)) != 1 && power(i, 1 << k) == 1) { break; } i += 1; } return i; } template<int P> constexpr MInt<P> primitiveRoot = findPrimitiveRoot<P>(); template<> constexpr MInt<998244353> primitiveRoot<998244353> {31}; template<int P> constexpr void dft(std::vector<MInt<P>> &a) { int n = a.size(); if (int(rev.size()) != n) { int k = __builtin_ctz(n) - 1; rev.resize(n); for (int i = 0; i < n; i++) { rev[i] = rev[i >> 1] >> 1 | (i & 1) << k; } } for (int i = 0; i < n; i++) { if (rev[i] < i) { std::swap(a[i], a[rev[i]]); } } if (roots<P>.size() < n) { int k = __builtin_ctz(roots<P>.size()); roots<P>.resize(n); while ((1 << k) < n) { auto e = power(primitiveRoot<P>, 1 << (__builtin_ctz(P - 1) - k - 1)); for (int i = 1 << (k - 1); i < (1 << k); i++) { roots<P>[2 * i] = roots<P>[i]; roots<P>[2 * i + 1] = roots<P>[i] * e; } k++; } } for (int k = 1; k < n; k *= 2) { for (int i = 0; i < n; i += 2 * k) { for (int j = 0; j < k; j++) { MInt<P> u = a[i + j]; MInt<P> v = a[i + j + k] * roots<P>[k + j]; a[i + j] = u + v; a[i + j + k] = u - v; } } } } template<int P> constexpr void idft(std::vector<MInt<P>> &a) { int n = a.size(); std::reverse(a.begin() + 1, a.end()); dft(a); MInt<P> inv = (1 - P) / n; for (int i = 0; i < n; i++) { a[i] *= inv; } } template<int P = 998244353> struct Poly { using Value = MInt<P>; std::vector<Value> a; constexpr Poly() : a{} {} explicit constexpr Poly(int n) : a(n) {} template<class F> explicit constexpr Poly(int n, F f) : a(n) { for (int i = 0; i < n; i++) { a[i] = f(i); } } explicit constexpr Poly(const std::vector<Value> &a) : a(a) {} explicit constexpr Poly(const std::initializer_list<Value> &a) : a(a) {} template<class It> explicit constexpr Poly(It first, It last) : a(first, last) {} constexpr int size() const { return a.size(); } explicit constexpr operator std::vector<Value>() const { return a; } constexpr Value operator[](int idx) const { if (idx < size()) { return a[idx]; } else { return 0; } } constexpr Value &operator[](int idx) { return a[idx]; } constexpr Poly shift(int k) const { if (k >= 0) { auto b = a; b.insert(b.begin(), k, 0); return Poly(b); } else if (size() <= -k) { return Poly(); } else { return Poly(a.begin() + (-k), a.end()); } } constexpr Poly resize(int k) const { Poly f{a}; f.a.resize(k); return f; } constexpr friend Poly operator+(const Poly &a, const Poly &b) { std::vector<Value> res(std::max(a.size(), b.size())); for (int i = 0; i < int(res.size()); i++) { res[i] = a[i] + b[i]; } return Poly(res); } constexpr friend Poly operator-(const Poly &a, const Poly &b) { std::vector<Value> res(std::max(a.size(), b.size())); for (int i = 0; i < int(res.size()); i++) { res[i] = a[i] - b[i]; } return Poly(res); } constexpr friend Poly operator-(const Poly &a) { std::vector<Value> res(a.size()); for (int i = 0; i < int(res.size()); i++) { res[i] = -a[i]; } return Poly(res); } constexpr friend Poly operator*(Poly a, Poly b) { if (a.size() == 0 || b.size() == 0) { return Poly(); } if (a.size() < b.size()) { std::swap(a, b); } if (b.size() < 128) { Poly c(a.size() + b.size() - 1); for (int i = 0; i < a.size(); i++) { for (int j = 0; j < b.size(); j++) { c[i + j] += a[i] * b[j]; } } return c; } int sz = 1, tot = a.size() + b.size() - 1; while (sz < tot) { sz *= 2; } a.a.resize(sz); b.a.resize(sz); dft(a.a); dft(b.a); for (int i = 0; i < sz; ++i) { a.a[i] = a[i] * b[i]; } idft(a.a); a.resize(tot); return a; } constexpr friend Poly operator*(Value a, Poly b) { for (int i = 0; i < int(b.size()); i++) { b[i] *= a; } return b; } constexpr friend Poly operator*(Poly a, Value b) { for (int i = 0; i < int(a.size()); i++) { a[i] *= b; } return a; } constexpr Poly &operator+=(Poly b) { return (*this) = (*this) + b; } constexpr Poly &operator-=(Poly b) { return (*this) = (*this) - b; } constexpr Poly &operator*=(Poly b) { return (*this) = (*this) * b; } constexpr Poly &operator*=(Value b) { return (*this) = (*this) * b; } constexpr Poly deriv() const { if (a.empty()) { return Poly(); } std::vector<Value> res(size() - 1); for (int i = 0; i < size() - 1; ++i) { res[i] = (i + 1) * a[i + 1]; } return Poly(res); } constexpr Poly integr() const { std::vector<Value> res(size() + 1); for (int i = 0; i < size(); ++i) { res[i + 1] = a[i] / (i + 1); } return Poly(res); } constexpr Poly inv(int m) const { Poly x{a[0].inv()}; int k = 1; while (k < m) { k *= 2; x = (x * (Poly{2} - resize(k) * x)).resize(k); } return x.resize(m); } constexpr Poly log(int m) const { return (deriv() * inv(m)).integr().resize(m); } constexpr Poly exp(int m) const { Poly x{1}; int k = 1; while (k < m) { k *= 2; x = (x * (Poly{1} - x.log(k) + resize(k))).resize(k); } return x.resize(m); } constexpr Poly pow(int k, int m) const { int i = 0; while (i < size() && a[i] == 0) { i++; } if (i == size() || 1LL * i * k >= m) { return Poly(m); } Value v = a[i]; auto f = shift(-i) * v.inv(); return (f.log(m - i * k) * k).exp(m - i * k).mulxk(i * k) * power(v, k); } constexpr Poly sqrt(int m) const { Poly x{1}; int k = 1; while (k < m) { k *= 2; x = (x + (resize(k) * x.inv(k)).resize(k)) * CInv<2, P>; } return x.resize(m); } constexpr Poly mulT(Poly b) const { if (b.size() == 0) { return Poly(); } int n = b.size(); std::reverse(b.a.begin(), b.a.end()); return ((*this) * b).shift(-(n - 1)); } constexpr std::vector<Value> eval(std::vector<Value> x) const { if (size() == 0) { return std::vector<Value>(x.size(), 0); } const int n = std::max(int(x.size()), size()); std::vector<Poly> q(4 * n); std::vector<Value> ans(x.size()); x.resize(n); std::function<void(int, int, int)> build = [&](int p, int l, int r) { if (r - l == 1) { q[p] = Poly{1, -x[l]}; } else { int m = (l + r) / 2; build(2 * p, l, m); build(2 * p + 1, m, r); q[p] = q[2 * p] * q[2 * p + 1]; } }; build(1, 0, n); std::function<void(int, int, int, const Poly &)> work = [&](int p, int l, int r, const Poly &num) { if (r - l == 1) { if (l < int(ans.size())) { ans[l] = num[0]; } } else { int m = (l + r) / 2; work(2 * p, l, m, num.mulT(q[2 * p + 1]).resize(m - l)); work(2 * p + 1, m, r, num.mulT(q[2 * p]).resize(r - m)); } }; work(1, 0, n, mulT(q[1].inv(n))); return ans; } constexpr auto begin() const { return a.begin(); } constexpr auto end() const { return a.end(); } }; struct Comb { int n; std::vector<Z> _fac; std::vector<Z> _invfac; std::vector<Z> _inv; Comb() : n{0}, _fac{1}, _invfac{1}, _inv{0} {} Comb(int n) : Comb() { init(n); } void init(int m) { if (m <= n) return; _fac.resize(m + 1); _invfac.resize(m + 1); _inv.resize(m + 1); for (int i = n + 1; i <= m; i++) { _fac[i] = _fac[i - 1] * i; } _invfac[m] = _fac[m].inv(); for (int i = m; i > n; i--) { _invfac[i - 1] = _invfac[i] * i; _inv[i] = _invfac[i] * _fac[i - 1]; } n = m; } Z fac(int m) { if (m > n) init(2 * m); return _fac[m]; } Z invfac(int m) { if (m > n) init(2 * m); return _invfac[m]; } Z inv(int m) { if (m > n) init(2 * m); return _inv[m]; } Z binom(int n, int m) { if (n < m || m < 0) return 0; return fac(n) * invfac(m) * invfac(n - m); } } comb; int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); int N; i64 B, C; std::cin >> N >> B >> C; std::vector<Z> dp(N); dp[0] = 1; for (int i = 0; i < 60; i++) { int c = C >> i & 1; auto f = Poly(dp) * Poly(N + 1, [&](int j) { if (j % 2 == c) { return comb.binom(N, j); } return Z(0); }); int b = B >> i & 1; for (int i = 0; i < N; i++) { dp[i] = f[2 * i + b]; } } std::cout << dp[0] << "\n"; return 0; }