結果
| 問題 | No.2236 Lights Out On Simple Graph |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-03-03 22:21:47 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 11,602 bytes |
| 記録 | |
| コンパイル時間 | 2,064 ms |
| コンパイル使用メモリ | 194,848 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-09-17 23:24:27 |
| 合計ジャッジ時間 | 3,728 ms |
|
ジャッジサーバーID (参考情報) |
judge6 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 48 WA * 9 |
ソースコード
#include <bits/stdc++.h>
#define all(v) v.begin(), v.end()
#define rall(v) v.rbegin(), v.rend()
#define rep(i,n) for(int i=0;i<(int)(n);i++)
#define codefor int test;cin>>test;while(test--)
#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)
#define vector2d(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))
#define vector3d(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))
using namespace std;
using ll = long long;
template<class T> using rpriority_queue = priority_queue<T, vector<T>, greater<T>>;
template<class T> istream& operator>>(istream& is, vector<T>& vec) {for(T& x : vec)is >> x;return is;}
template<class T> ostream& operator<<(ostream& os, const vector<T>& vec) {if(vec.empty())return os;os << vec[0];for(auto it = vec.begin(); ++it!= vec.end();)os << ' ' << *it;return os;}
void in(){}
template <class Head, class... Tail> void in(Head& head, Tail&... tail){cin >> head;in(tail...);}
void out(){cout << '\n';}
template<class T>void out(const T& a){cout << a << '\n';}
template <class Head, class... Tail> void out(const Head& head,const Tail&... tail){cout << head << ' ';out(tail...);}
const int INF = 1 << 30;
const long long INF2 = 1ll << 60;
template<class T> void chmax(T &a,const T b){if(b>a)a=b;}
template<class T> void chmin(T &a,const T b){if(b<a)a=b;}
struct LCA_tree{
int _n,MAX_LOG_V,root;
vector<vector<int>> g;
vector<vector<int>> parent;
vector<int> depth;
LCA_tree() : _n(0) {}
LCA_tree(int n) : _n(n), g(n),depth(n) {
MAX_LOG_V = 1;
while(_n >> MAX_LOG_V) MAX_LOG_V++;
parent.resize(MAX_LOG_V, vector<int>(_n));
}
void merge(int u, int v){
g[u].push_back(v);
g[v].push_back(u);
}
void dfs(int v,int p,int d){
parent[0][v]=p;
depth[v]=d;
for(int i=0;i<g[v].size();i++){
if(g[v][i]!=p)dfs(g[v][i],v,d+1);
}
}
void init(int r){
root=r;
dfs(root,-1,0);
for(int j=0;j+1<MAX_LOG_V;j++){
for(int i=0;i<_n;i++){
if(parent[j][i]<0)parent[j+1][i]=-1;
else parent[j+1][i]=parent[j][parent[j][i]];
}
}
}
int lca(int u,int v){
if(depth[u]>depth[v])swap(u,v);
for(int i=0;i<MAX_LOG_V;i++){
if((depth[v]-depth[u])>>i&1)v=parent[i][v];
}
if(u==v)return u;
for(int i=MAX_LOG_V-1;i>=0;i--){
if(parent[i][u]!=parent[i][v]){
u=parent[i][u];
v=parent[i][v];
}
}
return parent[0][u];
}
//パスの辺数
int dist(int u,int v){
int lcav=lca(u,v);
if(lcav==-1)return depth[u]+depth[v];
return depth[u]+depth[v]-2*depth[lcav];
}
//頂点wが頂点u,vのパス上に存在するか
int on_path(int u,int v,int w){
return (dist(u,w)+dist(v,w)==dist(u,v));
}
};
template <class Cap, class Cost> struct mcf_graph {
public:
mcf_graph() {}
mcf_graph(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap, Cost cost) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
g[from].push_back(_edge{to, int(g[to].size()), cap, cost});
g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
Cost cost;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{
pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
};
}
std::vector<edge> edges() {
int m = int(pos.size());
std::vector<edge> result(m);
for (int i = 0; i < m; i++) {
result[i] = get_edge(i);
}
return result;
}
std::pair<Cap, Cost> flow(int s, int t) {
return flow(s, t, std::numeric_limits<Cap>::max());
}
std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
return slope(s, t, flow_limit).back();
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
return slope(s, t, std::numeric_limits<Cap>::max());
}
std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
std::vector<Cost> dual(_n, 0), dist(_n);
std::vector<int> pv(_n), pe(_n);
std::vector<bool> vis(_n);
auto dual_ref = [&]() {
std::fill(dist.begin(), dist.end(),
std::numeric_limits<Cost>::max());
std::fill(pv.begin(), pv.end(), -1);
std::fill(pe.begin(), pe.end(), -1);
std::fill(vis.begin(), vis.end(), false);
struct Q {
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
std::priority_queue<Q> que;
dist[s] = 0;
que.push(Q{0, s});
while (!que.empty()) {
int v = que.top().to;
que.pop();
if (vis[v]) continue;
vis[v] = true;
if (v == t) break;
for (int i = 0; i < int(g[v].size()); i++) {
auto e = g[v][i];
if (vis[e.to] || !e.cap) continue;
Cost cost = e.cost - dual[e.to] + dual[v];
if (dist[e.to] - dist[v] > cost) {
dist[e.to] = dist[v] + cost;
pv[e.to] = v;
pe[e.to] = i;
que.push(Q{dist[e.to], e.to});
}
}
}
if (!vis[t]) {
return false;
}
for (int v = 0; v < _n; v++) {
if (!vis[v]) continue;
dual[v] -= dist[t] - dist[v];
}
return true;
};
Cap flow = 0;
Cost cost = 0, prev_cost = -1;
std::vector<std::pair<Cap, Cost>> result;
result.push_back({flow, cost});
while (flow < flow_limit) {
if (!dual_ref()) break;
Cap c = flow_limit - flow;
for (int v = t; v != s; v = pv[v]) {
c = std::min(c, g[pv[v]][pe[v]].cap);
}
for (int v = t; v != s; v = pv[v]) {
auto& e = g[pv[v]][pe[v]];
e.cap -= c;
g[v][e.rev].cap += c;
}
Cost d = -dual[s];
flow += c;
cost += c * d;
if (prev_cost == d) {
result.pop_back();
}
result.push_back({flow, cost});
prev_cost = cost;
}
return result;
}
std::vector<Cost> detail_slope(int s, int t){
std::vector<std::pair<Cap, Cost>> ori = slope(s, t);
std::vector<Cost> ans(ori.back().first + 1);
Cap x = 0, nx;
Cost y = 0, ny;
for(int i = 1; i < ori.size(); i++){
std::tie(nx, ny) = ori[i];
Cost d = (ny - y) / (nx - x);
while(x != nx){
++x, y+= d;
ans[x] = y;
}
}
return ans;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
Cost cost;
};
std::vector<std::pair<int, int>> pos;
std::vector<std::vector<_edge>> g;
};
template< typename T >
T hungarian(vector<vector< T >> &A) {
const T infty = numeric_limits< T >::max();
const int N = (int) A.size();
const int M = (int) A[0].size();
vector< int > P(M), way(M);
vector< T > U(N, 0), V(M, 0), minV;
vector< bool > used;
for(int i = 1; i < N; i++) {
P[0] = i;
minV.assign(M, infty);
used.assign(M, false);
int j0 = 0;
while(P[j0] != 0) {
int i0 = P[j0], j1 = 0;
used[j0] = true;
T delta = infty;
for(int j = 1; j < M; j++) {
if(used[j]) continue;
T curr = A[i0][j] - U[i0] - V[j];
if(curr < minV[j]) minV[j] = curr, way[j] = j0;
if(minV[j] < delta) delta = minV[j], j1 = j;
}
for(int j = 0; j < M; j++) {
if(used[j]) U[P[j]] += delta, V[j] -= delta;
else minV[j] -= delta;
}
j0 = j1;
}
do {
P[j0] = P[way[j0]];
j0 = way[j0];
} while(j0 != 0);
}
return -V[0];
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
INT(n, m);
vector<vector<ll>> A(n, vector<ll>(n, INF2));
int u, v;
vector<int> c(n);
for(int i = 0; i < m; i++){
cin >> u >> v;
u--, v--;
A[u][v] = A[v][u] = 1;
}
in(c);
for(int i = 0; i < n; i++) A[i][i] = 0;
for(int k = 0; k < n; k++){
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
chmin(A[i][j], A[i][k] + A[k][j]);
}
}
}
int cnt = count(all(c), 1);
if(cnt & 1){
out(-1);
return 0;
}
//cerr << "enter" << '\n';
mcf_graph<int, ll> g(2 * n + 2);
//cnt /= 2;
//cerr << cnt * 2 << '\n';
int s = 2 * n, t = s + 1;
for(int i = 0; i < n; i++){
if(c[i]){
g.add_edge(s, i, 1, 0);
g.add_edge(i + n, t, 1, 0);
}
for(int j = 0; j < n; j++){
if(i == j) continue;
if(c[i] && c[j]){
if(A[i][j] == INF2) continue;
g.add_edge(i, j + n, 1, A[i][j]);
}
}
}
auto p = g.flow(s, t);
if(p.first != cnt){
out(-1);
return 0;
}
//out(hungarian(A));
out(p.second / 2);
}
/*int main(){
ios::sync_with_stdio(false);
cin.tie(0);
INT(n, m);
vector<vector<ll>> A(n, vector<ll>(n, INF2));
int u, v;
vector<int> c(n);
for(int i = 0; i < m; i++){
cin >> u >> v;
u--, v--;
A[u][v] = A[v][u] = 1;
}
in(c);
for(int i = 0; i < n; i++) A[i][i] = 0;
for(int k = 0; k < n; k++){
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
chmin(A[i][j], A[i][k] + A[k][j]);
}
}
}
int cnt = count(all(c), 1);
if(cnt & 1){
out(-1);
return 0;
}
int n1 = n / 2, n2 = n - n1;
vector<ll> dp(1 << n1, INF2), dp2(1 << n2, INF2);
dp[0] = dp2[0] = 0;
for(int i = 0; i < (1 << n1); i++){
if(__builtin_popcount(i) & 1) continue;
for(int j = 0; j < n1; j++){
if(i >> j & 1) continue;
for(int k = j + 1; k < n1; k++){
if(i >> k & 1) continue;
chmin(dp[i | (1 << j) | (1 << k)], dp[i] + A[j][k]);
}
}
}
for(int i = 0; i < (1 << n2); i++){
if(__builtin_popcount(i) & 1) continue;
for(int j = 0; j < n2; j++){
if(i >> j & 1) continue;
for(int k = j + 1; k < n2; k++){
if(i >> k & 1) continue;
chmin(dp2[i | (1 << j) | (1 << k)], dp2[i] + A[j + n1][k + n1]);
}
}
}
mcf_graph<int, ll> g(n + 2);
int s = n, t = s + 1;
for(int i = 0; i < n1; i++){
for(int j = n1; j < n; j++){
if(c[i] && c[j] && A[i][j] != INF2) g.add_edge(i, j, 1, A[i][j]);
}
}
}*/