結果

問題 No.2236 Lights Out On Simple Graph
ユーザー ShirotsumeShirotsume
提出日時 2023-03-03 22:21:59
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 5,487 bytes
コンパイル時間 514 ms
コンパイル使用メモリ 81,408 KB
実行使用メモリ 76,928 KB
最終ジャッジ日時 2024-09-17 23:24:35
合計ジャッジ時間 5,702 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 50 ms
55,296 KB
testcase_01 AC 45 ms
55,040 KB
testcase_02 AC 46 ms
55,808 KB
testcase_03 AC 80 ms
76,544 KB
testcase_04 WA -
testcase_05 WA -
testcase_06 AC 78 ms
76,672 KB
testcase_07 AC 75 ms
75,776 KB
testcase_08 AC 46 ms
55,296 KB
testcase_09 AC 45 ms
54,912 KB
testcase_10 WA -
testcase_11 WA -
testcase_12 AC 67 ms
73,040 KB
testcase_13 WA -
testcase_14 AC 67 ms
73,344 KB
testcase_15 AC 59 ms
69,888 KB
testcase_16 AC 61 ms
70,912 KB
testcase_17 WA -
testcase_18 WA -
testcase_19 AC 61 ms
70,912 KB
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 AC 67 ms
73,088 KB
testcase_26 AC 74 ms
76,544 KB
testcase_27 WA -
testcase_28 AC 72 ms
74,608 KB
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
testcase_37 WA -
testcase_38 AC 61 ms
69,376 KB
testcase_39 AC 59 ms
68,608 KB
testcase_40 AC 67 ms
72,832 KB
testcase_41 AC 63 ms
70,528 KB
testcase_42 WA -
testcase_43 WA -
testcase_44 AC 64 ms
72,704 KB
testcase_45 AC 76 ms
75,776 KB
testcase_46 AC 76 ms
76,544 KB
testcase_47 WA -
testcase_48 AC 77 ms
76,544 KB
testcase_49 AC 74 ms
76,276 KB
testcase_50 WA -
testcase_51 WA -
testcase_52 WA -
testcase_53 AC 59 ms
67,328 KB
testcase_54 WA -
testcase_55 AC 62 ms
69,632 KB
testcase_56 AC 61 ms
70,400 KB
testcase_57 AC 61 ms
70,528 KB
testcase_58 AC 60 ms
69,504 KB
testcase_59 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
from collections import deque, Counter
input = lambda: sys.stdin.readline().rstrip()
ii = lambda: int(input())
mi = lambda: map(int, input().split())
li = lambda: list(mi())
inf = 2 ** 63 - 1
mod = 2
class matrix():
    r = 1
    c = 1
    A = None
    mod = 2
    def __init__(self, r, c, mod = 2):
        self.r = r
        self.c = c
        self.A = [[0] * self.c for _ in range(self.r)]
        if mod is not None:
            self.mod = mod
    
    def makeone(r = 1):
        A = matrix(r, r, mod)
        for i in range(r):
            A[i, i] = 1
        return A
    def __getitem__(self, key):
        rnow, cnow = key
        return self.A[rnow][cnow]
    
    def __setitem__(self, key, value):
        rnow, cnow = key
        self.A[rnow][cnow] = value
    
    def __add__(self, other):
        assert self.r == other.r and self.c == other.c
        ret = matrix(self.r, self.c)
        for i in range(self.r):
            for j in range(self.c):
                ret[i, j] = self[i, j] + other[i, j]
                ret[i, j] %= self.mod
        return ret

    def __sub__(self, other):
        
        assert self.r == other.r and self.c == other.c
        ret = matrix(self.r, self.c)
        for i in range(self.r):
            for j in range(self.c):
                ret[i, j] = self[i, j] - other[i, j]
                ret[i, j] %= self.mod
        return ret

    def __mul__(self, other):

        assert self.c == other.r
        ret = matrix(self.r, other.c)
        for i in range(self.r):
            for j in range(self.c):
                for k in range(other.c):
                    ret[i, k] += self[i, j] * other[j, k]
                    ret[i, k] %= self.mod
        return ret

    def augment(self, other):

        assert self.r == other.r

        X = matrix(self.r, self.c + other.c, mod = self.mod)

        for i in range(self.r):
            for j in range(self.c):
                X[i, j] = self[i, j]
            for j in range(other.c):
                X[i, j + self.c] = other[i, j]
        
        return X
    
    def diminish(self, c):

        X = []

        for i in range(self.r):
            X.append((self.A[i][:c]))
        
        return matrix(self.r, c, mod = self.mod, A = X)
        
    def hakidashi(self):
        for i in range(self.c):
            for j in range(i + 1, self.r):
                if self.A[j][i] != 0:
                    for k in range(self.c):
                        self.A[j][k], self.A[i][k] = self.A[i][k], self.A[j][k]
                    break

        for i in range(self.r):
            for j in range(self.c):
                if self[i, j] != 0:
                    break
            else:
                continue
            K = pow(self[i, j], self.mod - 2, self.mod)

            for to in range(self.c):
                self[i, to] *= K
                self[i, to] %= self.mod

            for i2 in range(self.r):
                if i == i2:
                    continue
                time = self[i2, j]
                for j2 in range(self.c):
                    self[i2, j2] -= time * self[i, j2]
                    self[i2, j2] %= self.mod

            

        return self




    def inv(self):
        assert self.c == self.r

        one = matrix.makeone(r = self.r)
        new = self.augment(one)
        new.hakidashi()
        for i in range(self.r):
            for j in range(self.c):
                if i == j:
                    if new[i, j] != 1:
                        return 0, new
                else:
                    if new[i, j] != 0:
                        return 0, new
        
        X = matrix(self.r, self.c)

        for i in range(self.r):
            for j in range(self.c):
                X[i, j] = new[i, j + self.c]

        return 1, X     




    def lineareq(self, b):
        assert self.r == b.r
        assert b.c == 1
        Y = self.augment(b)
        Y = Y.hakidashi()
        B = [[0] * self.c for _ in range(self.c)]
        ans = [0] * self.c

        flag = [0] * self.c
        for i in range(self.r):
            j = 0
            while j < self.c and Y[i, j] == 0:
                j += 1
            if j == self.c:
                if Y[i, -1] != 0:
                    return None, None
                continue
            flag[j] = 1
            ans[j] = Y[i, -1]
            for k in range(j + 1, self.c):
                if Y[i, k] % self.mod != 0:
                    B[k][j] = (-Y[i, k])% self.mod
                    flag[k] = -1
        for i in range(self.c):
            if  flag[i] != 1:
                B[i][i] = 1
        B=[B[i] for i in range(self.c) if flag[i] != 1]
        return ans,B

    def print(self):
        for v in self.A:
            print(*v)


import sys
input = lambda: sys.stdin.readline().rstrip()
ii = lambda: int(input())
mi = lambda: map(int, input().split())
li = lambda: list(mi())
INF = 2 ** 63 - 1
mod = 998244353

n, m = mi()

EDGE = [[v - 1 for v in li()] for _ in range(m)]
graph = [[] for _ in range(n)]
for u, v in EDGE:
    graph[u].append(v)
    graph[v].append(u)

c = li()

A = matrix(n, m)
B = matrix(n, 1)

for i, V in enumerate(EDGE):
    u, v = V
    A[u, i] = 1
    A[v, i] = 1

for i in range(n):
    if c[i] == 1:
        B[i, 0] = 1
X, Y = A.lineareq(B)

if X is None:
    print(-1)
    exit()

ans = inf
for V in Y:
    cnt = 0
    for i in range(len(X)):
        if X[i] ^ V[i] == 1:
            cnt += 1
    ans = min(ans, cnt)
print(ans)




0