結果

問題 No.2237 Xor Sum Hoge
ユーザー 👑 rin204rin204
提出日時 2023-03-03 23:01:58
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,395 ms / 10,000 ms
コード長 20,684 bytes
コンパイル時間 2,837 ms
コンパイル使用メモリ 223,724 KB
実行使用メモリ 7,864 KB
最終ジャッジ日時 2024-09-18 00:11:29
合計ジャッジ時間 23,527 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1,395 ms
7,864 KB
testcase_01 AC 5 ms
6,944 KB
testcase_02 AC 5 ms
6,944 KB
testcase_03 AC 5 ms
6,940 KB
testcase_04 AC 9 ms
6,940 KB
testcase_05 AC 16 ms
6,940 KB
testcase_06 AC 9 ms
6,940 KB
testcase_07 AC 9 ms
6,944 KB
testcase_08 AC 9 ms
6,940 KB
testcase_09 AC 9 ms
6,940 KB
testcase_10 AC 17 ms
6,940 KB
testcase_11 AC 2 ms
6,944 KB
testcase_12 AC 3 ms
6,940 KB
testcase_13 AC 3 ms
6,944 KB
testcase_14 AC 660 ms
6,940 KB
testcase_15 AC 2 ms
6,940 KB
testcase_16 AC 667 ms
6,944 KB
testcase_17 AC 3 ms
6,944 KB
testcase_18 AC 313 ms
6,940 KB
testcase_19 AC 316 ms
6,940 KB
testcase_20 AC 669 ms
6,940 KB
testcase_21 AC 1,389 ms
7,760 KB
testcase_22 AC 1,380 ms
7,568 KB
testcase_23 AC 1,380 ms
7,732 KB
testcase_24 AC 1,384 ms
7,724 KB
testcase_25 AC 1,382 ms
7,576 KB
testcase_26 AC 1,393 ms
7,760 KB
testcase_27 AC 1,373 ms
7,804 KB
testcase_28 AC 1,386 ms
7,604 KB
testcase_29 AC 1,387 ms
7,700 KB
testcase_30 AC 1,392 ms
7,856 KB
testcase_31 AC 2 ms
6,940 KB
testcase_32 AC 2 ms
6,944 KB
testcase_33 AC 15 ms
6,944 KB
testcase_34 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "A.cpp"
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
using namespace std;

using ll = long long;
using ull = unsigned long long;
template <class T>
using pq = priority_queue<T>;
template <class T>
using qp = priority_queue<T, vector<T>, greater<T>>;
#define vec(T, A, ...) vector<T> A(__VA_ARGS__);
#define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__));
#define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__)));

#ifndef RIN__LOCAL
#define endl "\n"
#endif
#define spa ' '
#define len(A) A.size()
#define all(A) begin(A), end(A)

#define fori1(a) for(ll _ = 0; _ < (a); _++)
#define fori2(i, a) for(ll i = 0; i < (a); i++)
#define fori3(i, a, b) for(ll i = (a); i < (b); i++)
#define fori4(i, a, b, c) for(ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__)

template <typename T>
vector<tuple<ll, T>> ENUMERATE(vector<T> &A, ll s = 0){
    vector<tuple<ll, T>> ret(A.size());
    for(int i = 0; i < A.size(); i++) ret[i] = {i + s, A[i]};
    return ret;
}

vector<tuple<ll, char>> ENUMERATE(string &A, ll s = 0){
    vector<tuple<ll, char>> ret(A.size());
    for(int i = 0; i < A.size(); i++) ret[i] = {i + s, A[i]};
    return ret;
}

#define enum1(A) fori(A.size())
#define enum2(a, A) for(auto a:A)
#define enum3(i, a, A) for(auto&& [i, a]: ENUMERATE(A))
#define enum4(i, a, A, s) for(auto&& [i, a]: ENUMERATE(A, s))
#define enum(...) overload4(__VA_ARGS__, enum4, enum3, enum2, enum1)(__VA_ARGS__)

template <typename T, typename S>
vector<tuple<T, S>> ZIP(vector<T> &A, vector<S> &B){
    int n = min(A.size(), B.size());
    vector<tuple<T, S>> ret(n);
    for(int i = 0; i < n; i++) ret[i] = {A[i], B[i]};
    return ret;
}

template <typename T, typename S>
vector<tuple<ll, T, S>> ENUMZIP(vector<T> &A, vector<S> &B, ll s = 0){
    int n = min(A.size(), B.size());
    vector<tuple<ll, T, S>> ret(n);
    for(int i = 0; i < n; i++) ret[i] = {i + s, A[i], B[i]};
    return ret;
}

#define zip4(a, b, A, B) for(auto&& [a, b]: ZIP(A, B))
#define enumzip5(i, a, b, A, B) for(auto&& [i, a, b]: ENUMZIP(A, B))
#define enumzip6(i, a, b, A, B, s) for(auto&& [i, a, b]: ENUMZIP(A, B, s))
#define overload6(a, b, c, d, e, f, g, ...) g
#define zip(...) overload6(__VA_ARGS__, enumzip6, enumzip5, zip4, _, _, _)(__VA_ARGS__)

vector<char> stoc(string &S){
    int n = S.size();
    vector<char> ret(n);
    for(int i = 0; i < n; i++) ret[i] = S[i];
    return ret;
}

#define INT(...) int __VA_ARGS__; inp(__VA_ARGS__);
#define LL(...) ll __VA_ARGS__; inp(__VA_ARGS__);
#define STRING(...) string __VA_ARGS__; inp(__VA_ARGS__);
#define CHAR(...) char __VA_ARGS__; inp(__VA_ARGS__);
#define VEC(T, A, n) vector<T> A(n); inp(A);
#define VVEC(T, A, n, m) vector<vector<T>> A(n, vector<T>(m)); inp(A);

const ll MOD1 = 1000000007;
const ll MOD9 = 998244353;

template<class T> auto min(const T& a){
    return *min_element(all(a));
}
template<class T> auto max(const T& a){
    return *max_element(all(a));
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

void FLUSH(){cout << flush;}
void print(){cout << endl;}
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
    cout << head;
    if (sizeof...(Tail)) cout << spa;
    print(forward<Tail>(tail)...);
}
template<typename T>
void print(vector<T> &A){
    int n = A.size();
    for(int i = 0; i < n; i++){
        cout << A[i];
        if(i != n - 1) cout << ' ';
    }
    cout << endl;
}
template<typename T>
void print(vector<vector<T>> &A){
    for(auto &row: A) print(row);
}
template<typename T, typename S>
void print(pair<T, S> &A){
    cout << A.first << spa << A.second << endl;
}
template<typename T, typename S>
void print(vector<pair<T, S>> &A){
    for(auto &row: A) print(row);
}
template<typename T, typename S>
void prisep(vector<T> &A, S sep){
    int n = A.size();
    for(int i = 0; i < n; i++){
        cout << A[i];
        if(i == n - 1) cout << endl;
        else cout << sep;
    }
}
template<typename T, typename S>
void priend(T A, S end){
    cout << A << end;
}
template<typename T>
void priend(T A){
    priend(A, spa);
}
template<class... T>
void inp(T&... a){
    (cin >> ... >> a);
}
template<typename T>
void inp(vector<T> &A){
    for(auto &a:A) cin >> a;
}
template<typename T>
void inp(vector<vector<T>> &A){
    for(auto &row:A) inp(row);
}
template<typename T, typename S>
void inp(pair<T, S> &A){
    inp(A.first, A.second);
}
template<typename T, typename S>
void inp(vector<pair<T, S>> &A){
    for(auto &row: A) inp(row.first, row.second);
}

template<typename T>
T sum(vector<T> &A){
    T tot = 0;
    for(auto a:A) tot += a;
    return tot;
}

template<typename T>
pair<vector<T>, map<T, int>> compression(vector<T> X){
    sort(all(X));
    X.erase(unique(all(X)), X.end());
    map<T, int> mp;
    for(int i = 0; i < X.size(); i++) mp[X[i]] = i;
    return {X, mp};
}

#line 2 "Library/C++/other/Modint.hpp"

template<int MOD>
struct Modint{
    int x;
    Modint() : x(0){}
    Modint(int64_t y){
        if(y >= 0) x = y % MOD;
        else x = (y % MOD + MOD) % MOD;
    }

    Modint &operator+=(const Modint &p){
        x += p.x;
        if(x >= MOD) x -= MOD;
        return *this;
    }

    Modint &operator-=(const Modint &p){
        x -= p.x;
        if(x < 0) x += MOD;
        return *this;
    }

    Modint &operator*=(const Modint &p){
        x = int(1LL * x * p.x % MOD);
        return *this;
    }

    Modint &operator/=(const Modint &p){
        *this *= p.inverse();
        return *this;
    }

    Modint &operator%=(const Modint &p){
        assert(p.x == 0);
        return *this;
    }

    Modint operator-() const{
        return Modint(-x);
    }

    Modint& operator++() {
        x++;
        if (x == MOD) x = 0;
        return *this;
    }

    Modint& operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }

    Modint operator++(int) {
        Modint result = *this;
        ++*this;
        return result;
    }

    Modint operator--(int) {
        Modint result = *this;
        --*this;
        return result;
    }

    friend Modint operator+(const Modint &lhs, const Modint &rhs){
        return Modint(lhs) += rhs;
    }

    friend Modint operator-(const Modint &lhs, const Modint &rhs){
        return Modint(lhs) -= rhs;
    }

    friend Modint operator*(const Modint &lhs, const Modint &rhs){
        return Modint(lhs) *= rhs;
    }

    friend Modint operator/(const Modint &lhs, const Modint &rhs){
        return Modint(lhs) /= rhs;
    }

    friend Modint operator%(const Modint &lhs, const Modint &rhs){
        assert(rhs.x == 0);
        return Modint(lhs);
    }

    bool operator==(const Modint &p) const{
        return x == p.x;
    }

    bool operator!=(const Modint &p) const{
        return x != p.x;
    }

    bool operator<(const Modint &rhs) {
        return x < rhs.x;
    }

    bool operator<=(const Modint &rhs) {
        return x <= rhs.x;
    }

    bool operator>(const Modint &rhs) {
        return x > rhs.x;
    }

    bool operator>=(const Modint &rhs) {
        return x >= rhs.x;
    }

    Modint inverse() const{
        int a = x, b = MOD, u = 1, v = 0, t;
        while(b > 0){
            t = a / b;
            a -= t * b;
            u -= t * v;
            swap(a, b);
            swap(u, v);
        }
        return Modint(u);
    }

    Modint pow(int64_t k) const{
        Modint ret(1);
        Modint y(x);
        while(k > 0){
            if(k & 1) ret *= y;
            y *= y;
            k >>= 1;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Modint &p){
        return os << p.x;
    }

    friend istream &operator>>(istream &is, Modint &p){
        int64_t y;
        is >> y;
        p = Modint<MOD>(y);
        return (is);
    }

    static int get_mod(){
        return MOD;
    }
};

struct Arbitrary_Modint{
    int x;
    static int MOD;

    static void set_mod(int mod){
        MOD = mod;
    }

    Arbitrary_Modint() : x(0){}
    Arbitrary_Modint(int64_t y){
        if(y >= 0) x = y % MOD;
        else x = (y % MOD + MOD) % MOD;
    }

    Arbitrary_Modint &operator+=(const Arbitrary_Modint &p){
        x += p.x;
        if(x >= MOD) x -= MOD;
        return *this;
    }

    Arbitrary_Modint &operator-=(const Arbitrary_Modint &p){
        x -= p.x;
        if(x < 0) x += MOD;
        return *this;
    }

    Arbitrary_Modint &operator*=(const Arbitrary_Modint &p){
        x = int(1LL * x * p.x % MOD);
        return *this;
    }

    Arbitrary_Modint &operator/=(const Arbitrary_Modint &p){
        *this *= p.inverse();
        return *this;
    }

    Arbitrary_Modint &operator%=(const Arbitrary_Modint &p){
        assert(p.x == 0);
        return *this;
    }

    Arbitrary_Modint operator-() const{
        return Arbitrary_Modint(-x);
    }

    Arbitrary_Modint& operator++() {
        x++;
        if (x == MOD) x = 0;
        return *this;
    }

    Arbitrary_Modint& operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }

    Arbitrary_Modint operator++(int) {
        Arbitrary_Modint result = *this;
        ++*this;
        return result;
    }

    Arbitrary_Modint operator--(int) {
        Arbitrary_Modint result = *this;
        --*this;
        return result;
    }

    friend Arbitrary_Modint operator+(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs){
        return Arbitrary_Modint(lhs) += rhs;
    }

    friend Arbitrary_Modint operator-(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs){
        return Arbitrary_Modint(lhs) -= rhs;
    }

    friend Arbitrary_Modint operator*(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs){
        return Arbitrary_Modint(lhs) *= rhs;
    }

    friend Arbitrary_Modint operator/(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs){
        return Arbitrary_Modint(lhs) /= rhs;
    }

    friend Arbitrary_Modint operator%(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs){
        assert(rhs.x == 0);
        return Arbitrary_Modint(lhs);
    }

    bool operator==(const Arbitrary_Modint &p) const{
        return x == p.x;
    }

    bool operator!=(const Arbitrary_Modint &p) const{
        return x != p.x;
    }

    bool operator<(const Arbitrary_Modint &rhs) {
        return x < rhs.x;
    }

    bool operator<=(const Arbitrary_Modint &rhs) {
        return x <= rhs.x;
    }

    bool operator>(const Arbitrary_Modint &rhs) {
        return x > rhs.x;
    }

    bool operator>=(const Arbitrary_Modint &rhs) {
        return x >= rhs.x;
    }

    Arbitrary_Modint inverse() const{
        int a = x, b = MOD, u = 1, v = 0, t;
        while(b > 0){
            t = a / b;
            a -= t * b;
            u -= t * v;
            swap(a, b);
            swap(u, v);
        }
        return Arbitrary_Modint(u);
    }

    Arbitrary_Modint pow(int64_t k) const{
        Arbitrary_Modint ret(1);
        Arbitrary_Modint y(x);
        while(k > 0){
            if(k & 1) ret *= y;
            y *= y;
            k >>= 1;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Arbitrary_Modint &p){
        return os << p.x;
    }

    friend istream &operator>>(istream &is, Arbitrary_Modint &p){
        int64_t y;
        is >> y;
        p = Arbitrary_Modint(y);
        return (is);
    }

    static int get_mod(){
        return MOD;
    }
};
int Arbitrary_Modint::MOD = 998244353;

using modint9 = Modint<998244353>;
using modint1 = Modint<1000000007>;
using modint = Arbitrary_Modint;
#line 188 "A.cpp"
using mint = modint9;
#line 2 "Library/C++/math/modinv.hpp"

template<typename T>
T modinv(T a, T MOD){
    T b = MOD;
    T u = 1;
    T v = 0;
    while(b > 0){
        T t = a / b;
        a -= t * b;
        u -= t * v;
        swap(a, b);
        swap(u, v);
    }
    if(a != 1) return -1;
    if(u < 0) u += MOD;
    return u;
}
#line 3 "Library/C++/math/Combination.hpp"

template <typename T>
struct Combination{
    int N;
    vector<T> fact, invfact;
    Combination(int N) : N(N){
        fact.resize(N + 1);
        invfact.resize(N + 1);
        fact[0] = 1;
        for(int i = 1; i <= N; i++){
            fact[i] = fact[i - 1] * i;
        }
        invfact[N] = T(1) / fact[N];
        for(int i = N - 1; i >= 0; i--){
            invfact[i] = invfact[i + 1] * (i + 1);
        }
    }

    T nCk(int n, int k){
        assert(0 <= n && n <= N);
        if(k > n || k < 0) return T(0);
        return fact[n] * invfact[k] * invfact[n - k];
    }

    T nPk(int n, int k){
        assert(0 <= n && n <= N);
        if(k > n || k < 0) return T(0);
        return fact[n] * invfact[n - k];
    }

    T nHk(int n, int k){
        if(n == 0 && k == 0) return T(1);
        return nCk(n + k - 1, k);
    }
};
#line 2 "Library/C++/convolution/NTT.hpp"

template<typename mint>
struct NumberTheoreticTransform{
    static vector<mint> roots, iroots, rate3, irate3;
    static int max_base;

    NumberTheoreticTransform() = default;

    static void init(){
        if(!roots.empty()) return;
        const unsigned mod = mint::get_mod();
        auto tmp = mod - 1;
        max_base = 0;
        while(tmp % 2 == 0){
            tmp >>= 1;
            max_base++;
        }
        mint root = 2;
        while(root.pow((mod - 1) >> 1) == 1) root++;

        roots.resize(max_base + 1);
        iroots.resize(max_base + 1);
        rate3.resize(max_base + 1);
        irate3.resize(max_base + 1);

        roots[max_base] = root.pow((mod - 1) >> max_base);
        iroots[max_base] = mint(1) / roots[max_base];
        for(int i = max_base - 1; i >= 0; i--){
            roots[i] = roots[i + 1] * roots[i + 1];
            iroots[i] = iroots[i + 1] * iroots[i + 1];
        }

        mint prod = 1, iprod = 1;
        for(int i = 0; i <= max_base - 3; i++){
            rate3[i] = roots[i + 3] * prod;
            irate3[i] = iroots[i + 3] * iprod;
            prod *= iroots[i + 3];
            iprod *= roots[i + 3];
        }
    }

    static void ntt(vector<mint> &A){
        init();
        int n = A.size();
        int h = __builtin_ctz(n);
        int le = 0;
        mint imag = roots[2];
        if(h & 1){
            int p = 1 << (h - 1);
            for(int i = 0; i < p; i++){
                auto r = A[i + p];
                A[i + p] = A[i] - r;
                A[i] += r;
            }
            le++;
        }
        for(; le + 1 < h; le += 2){
            int p = 1 << (h - le - 2);

            for(int i = 0; i < p; i++){
                auto a0 = A[i];
                auto a1 = A[i + p];
                auto a2 = A[i + 2 * p];
                auto a3 = A[i + 3 * p];
                auto a1na3imag = (a1 - a3) * imag;
                A[i] = a0 + a2 + a1 + a3;
                A[i + p] = a0 + a2 - (a1 + a3);
                A[i + 2 * p] = a0 - a2 + a1na3imag;
                A[i + 3 * p] = a0 - a2 - a1na3imag;
            }

            mint rot = rate3[0];
            for(int s = 1; s < (1 << le); s++){
                int offset = s << (h - le);
                mint rot2 = rot * rot;
                mint rot3 = rot2 * rot;
                for(int i = 0; i < p; i++){
                    auto a0 = A[i + offset];
                    auto a1 = A[i + offset + p] * rot;
                    auto a2 = A[i + offset + 2 * p] * rot2;
                    auto a3 = A[i + offset + 3 * p] * rot3;
                    auto a1na3imag = (a1 - a3) *  imag;
                    A[i + offset] = a0 + a2 + a1 + a3;
                    A[i + offset + p] = a0 + a2 - (a1 + a3);
                    A[i + offset + 2 * p] = a0 - a2 + a1na3imag;
                    A[i + offset + 3 * p] = a0 - a2 - a1na3imag;
                }
                rot *= rate3[__builtin_ctz(~s)];
            }
        }
    }

    static void intt(vector<mint> &A, bool f=true){
        init();
        int n = A.size();
        int h = __builtin_ctz(n);
        int le = h;
        mint iimag = iroots[2];
        for(; le > 1; le -= 2){
            int p = 1 << (h - le);

            for(int i = 0; i < p; i++){
                auto a0 = A[i];
                auto a1 = A[i + p];
                auto a2 = A[i + 2 * p];
                auto a3 = A[i + 3 * p];
                auto a2na3iimag = (a2 - a3) * iimag;
                A[i] = a0 + a1 + a2 + a3;
                A[i + p] = a0 - a1 + a2na3iimag;
                A[i + 2 * p] = a0 + a1 - (a2 + a3);
                A[i + 3 * p] = a0 - a1 - a2na3iimag;
            }

            mint irot = irate3[0];
            for(int s = 1; s < (1 << (le - 2)); s++){
                int offset = s << (h - le + 2);
                mint irot2 = irot * irot;
                mint irot3 = irot2 * irot;
                for(int i = 0; i < p; i++){
                    auto a0 = A[i + offset];
                    auto a1 = A[i + offset + p];
                    auto a2 = A[i + offset + 2 * p];
                    auto a3 = A[i + offset + 3 * p];
                    auto a2na3iimag = (a2 - a3) * iimag;
                    A[i + offset] = a0 + a1 + a2 + a3;
                    A[i + offset + p] = (a0 - a1 + a2na3iimag) * irot;
                    A[i + offset + 2 * p] = (a0 + a1 - (a2 + a3)) * irot2;
                    A[i + offset + 3 * p] = (a0 - a1 - a2na3iimag) * irot3;
                }
                irot *= irate3[__builtin_ctz(~s)];
            }
        }
        if(le >= 1){
            int p = 1 << (h - 1);
            for(int i = 0; i < p; i++){
                auto ajp = A[i] - A[i + p];
                A[i] += A[i + p];
                A[i + p] = ajp;
            }
        }
        if(f){
            mint inv = mint(1) / n;
            for(int i = 0; i < n; i++){
                A[i] *= inv;
            }
        }
    }

    static vector<mint> multiply(vector<mint> A, vector<mint> B){
        int need = A.size() + B.size() - 1;
        if(min(A.size(), B.size()) < 60){
            vector<mint> C(need, 0);
            for(int i = 0; i < A.size(); i++) for(int j = 0; j < B.size(); j++){
                C[i + j] += A[i] * B[j];
            }
            return C;
        }
        int sz = 1;
        while(sz < need) sz <<= 1;
        A.resize(sz, 0);
        B.resize(sz, 0);
        ntt(A);
        ntt(B);
        mint inv = mint(1) / sz;
        for(int i = 0; i < sz; i++) A[i] *= B[i] * inv;
        intt(A, false);
        A.resize(need);
        return A;
    }
};

template<typename mint>
vector<mint> NumberTheoreticTransform<mint>::roots = vector<mint>();
template<typename mint>
vector<mint> NumberTheoreticTransform<mint>::iroots = vector<mint>();
template<typename mint>
vector<mint> NumberTheoreticTransform<mint>::rate3 = vector<mint>();
template<typename mint>
vector<mint> NumberTheoreticTransform<mint>::irate3 = vector<mint>();
template<typename mint>
int NumberTheoreticTransform< mint >::max_base = 0;
#line 191 "A.cpp"
using NTT = NumberTheoreticTransform<mint>;

void solve(){
    INT(n);
    LL(b, c);
    Combination<mint> Comb(n + 10);
    if(c > b){
        print(0);
        return;
    }
    
    vec(mint, dp, n + 1, 0);
    dp[0] = 1;
    vec(mint, odd, n + 1, 0);
    vec(mint, even, n + 1, 0);
    fori(i, n + 1){
        if(i % 2 == 0) even[i] = Comb.nCk(n, i);
        else odd[i] = Comb.nCk(n, i);
    }
    reverse(all(odd));
    reverse(all(even));
    fori(i, 59, -1, -1){
        dp.resize(2 * n - 1);
        fori(i, 2 * n - 1, 0, -1){
            if(i % 2 == 0) dp[i] = dp[i / 2];
            else dp[i] = 0;
        }
        if((b >> i) & 1){
            vector<mint> ndp(dp.size() + 1);
            ndp[0] = 0;
            copy(all(dp), ndp.begin() + 1);
            swap(dp, ndp);
        }
        vector<mint> ndp(n + 1, 0);
        if((c >> i) & 1){
            auto res = NTT::multiply(dp, odd);
            fori(i, n + 1){
                ndp[i] += res[n + i];
            }
        }
        else{
            auto res = NTT::multiply(dp, even);
            fori(i, n + 1){
                ndp[i] += res[n + i];
            }
        }
        swap(dp, ndp);
    }
    print(dp[0]);
}

int main(){
    cin.tie(0)->sync_with_stdio(0);
    // cout << fixed << setprecision(12);
    int t;
    t = 1;
    // cin >> t;
    while(t--) solve();
    return 0;
}
0