結果

問題 No.2237 Xor Sum Hoge
ユーザー chro_96chro_96
提出日時 2023-03-03 23:57:06
言語 C
(gcc 12.3.0)
結果
WA  
実行時間 -
コード長 4,767 bytes
コンパイル時間 492 ms
コンパイル使用メモリ 33,664 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-09-18 00:39:23
合計ジャッジ時間 56,246 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2,682 ms
5,248 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 AC 29 ms
5,376 KB
testcase_11 WA -
testcase_12 WA -
testcase_13 AC 2,677 ms
5,376 KB
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 AC 2,637 ms
5,376 KB
testcase_18 WA -
testcase_19 AC 2,591 ms
6,944 KB
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 AC 2 ms
6,944 KB
testcase_32 AC 3 ms
6,940 KB
testcase_33 WA -
testcase_34 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <stdio.h>

long long mod_num = 998244353LL;
long long root = 3LL;
int length = 998244352;
long long inverse_root = 0LL;
long long inverse_l = 0LL;
 
int log_l = 0;
long long pow_root[16] = {};
long long pow_root_inv[16] = {};
 
long long power_mod (long long a, long long b, long long p) {
  long long ans = 0LL;
  
  a %= p;
  
  if (b <= 0LL) {
    return 1LL;
  }
  
  ans = power_mod(a, b/2LL, p);
  ans = (ans * ans) % p;
  if (b%2LL == 1LL) {
    ans = (ans * a) % p;
  }
  
  return ans;
}
 
void setup_ntt (int l) {
  int tmp_length = 4;
  log_l = 1;
  
  while(tmp_length < 2*l) {
    tmp_length *= 4;
    log_l++;
  }
  
  root = power_mod(root, length / tmp_length, mod_num);
  inverse_root = power_mod(root, mod_num-2LL, mod_num);
  inverse_l = power_mod((long long) tmp_length, mod_num-2LL, mod_num);
  length = tmp_length;
  
  pow_root[log_l-1] = root;
  for (int i = log_l-1; i > 0; i--) {
    pow_root[i-1] = pow_root[i];
    pow_root[i-1] *= pow_root[i];
    pow_root[i-1] %= mod_num;
    pow_root[i-1] *= pow_root[i-1];
    pow_root[i-1] %= mod_num;
  }
  
  pow_root_inv[log_l-1] = inverse_root;
  for (int i = log_l-1; i > 0; i--) {
    pow_root_inv[i-1] = pow_root_inv[i];
    pow_root_inv[i-1] *= pow_root_inv[i];
    pow_root_inv[i-1] %= mod_num;
    pow_root_inv[i-1] *= pow_root_inv[i-1];
    pow_root_inv[i-1] %= mod_num;
  }
  
  return;
}
 
void ntt_4n (long long *a, long long *pow_root) {
  long long root_1_4 = pow_root[0];
  
  for (int i = 0; i < length; i++) {
    int idx = 0;
    int tmp = i;
    for (int j = 0; j < log_l; j++) {
      idx <<= 2;
      idx |= (tmp&3);
      tmp >>= 2;
    }
    if (i < idx) {
      long long swap = a[i];
      a[i] = a[idx];
      a[idx] = swap;
    }
  }
  
  for (int i = 0; i < log_l; i++) {
    int step = (1<<(2*i));
    int stepx4 = (step<<2);
    int cnt = length/stepx4;
    long long tmp_root = 1LL;
    for (int j = 0; j < step; j++) {
      long long w1 = tmp_root;
      long long w2 = (w1*w1)%mod_num;
      long long w3 = (w2*w1)%mod_num;
      for (int k = 0; k < cnt; k++) {
        int idx1 = ((k*stepx4)|j);
        int idx2 = (idx1|step);
        int idx3 = (idx1|(2*step));
        int idx4 = (idx2|idx3);
        long long a1 = a[idx1];
        long long a2 = (a[idx2]*w1)%mod_num;
        long long a3 = (a[idx3]*w2)%mod_num;
        long long a4 = (a[idx4]*w3)%mod_num;
        long long wa2 = (a2*root_1_4)%mod_num;
        long long wa4 = (a4*root_1_4)%mod_num;
        long long pad = (mod_num<<1LL);
        a[idx1] = (a1+a2+a3+a4) % mod_num;
        a[idx2] = (a1+wa2-a3-wa4+pad) % mod_num;
        a[idx3] = (a1-a2+a3-a4+pad) % mod_num;
        a[idx4] = (a1-wa2-a3+wa4+pad) % mod_num;
      }
      tmp_root = (tmp_root*pow_root[i])%mod_num;
    }
  }
  
  return;
}

int main () {
  int n = 0;
  long long b = 0LL;
  long long c = 0LL;
  
  int res = 0;
  
  long long ans = 0LL;
  
  long long comb[60001] = {};
  long long mul = 1LL;
  long long div = 1LL;
  
  long long cnt[60001] = {};
  
  long long work[2][65536] = {};
  
  res = scanf("%d", &n);
  res = scanf("%lld", &b);
  res = scanf("%lld", &c);
  
  for (int i = 0; i <= n; i++) {
    comb[i] = mul*power_mod(div, mod_num-2LL, mod_num);
    comb[i] %= mod_num;
    mul *= (long long) (n-i);
    mul %= mod_num;
    div *= (long long) (i+1);
    div %= mod_num;
  }
  
  setup_ntt((n+1)/2);
  
  cnt[0] = 1LL;
  for (int i = 0; i < 60; i++) {
    for (int j = 0; j < length; j++) {
      work[0][j] = 0LL;
      work[1][j] = 0LL;
    }
    if ((b&(1LL<<((long long)i))) > 0LL && (c&(1LL<<((long long)i))) > 0LL) {
      for (int j = 0; j <= n; j += 2) {
        work[0][j/2] = cnt[j];
      }
      for (int k = 0; 2*k+1 <= n; k++) {
        work[1][k] = comb[2*k+1];
      }
    } else if ((b&(1LL<<((long long)i))) > 0LL) {
      for (int j = 1; j <= n; j += 2) {
        work[0][j/2] = cnt[j];
      }
      for (int k = 0; 2*k <= n; k++) {
        work[1][k] = comb[2*k];
      }
    } else if ((c&(1LL<<((long long)i))) > 0LL) {
      for (int j = 1; j <= n; j += 2) {
        work[0][j/2] = cnt[j];
      }
      for (int k = 0; 2*k+1 <= n; k++) {
        work[1][k] = comb[2*k+1];
      }
    } else {
      for (int j = 0; j <= n; j += 2) {
        work[0][j/2] = cnt[j];
      }
      for (int k = 0; 2*k <= n; k++) {
        work[1][k] = comb[2*k];
      }
    }
    ntt_4n(work[0], pow_root);
    ntt_4n(work[1], pow_root);
    for (int j = 0; j < length; j++) {
      work[0][j] *= work[1][j];
      work[0][j] %= mod_num;
    }
    ntt_4n(work[0], pow_root_inv);
    for (int j = 0; j <= n; j++) {
      cnt[j] = 0LL;
    }
    for (int j = 0; j <= n; j++) {
      cnt[j] = (work[0][j]*inverse_l)%mod_num;
    }
  }
  
  ans = cnt[0];
  printf("%lld\n", ans);
  
  return 0;
}
0