結果

問題 No.2237 Xor Sum Hoge
ユーザー ecotteaecottea
提出日時 2023-03-04 01:43:56
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 516 ms / 10,000 ms
コード長 8,528 bytes
コンパイル時間 4,890 ms
コンパイル使用メモリ 276,024 KB
実行使用メモリ 20,124 KB
最終ジャッジ日時 2024-09-18 00:52:58
合計ジャッジ時間 13,794 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 464 ms
19,992 KB
testcase_01 AC 4 ms
6,940 KB
testcase_02 AC 3 ms
6,940 KB
testcase_03 AC 4 ms
6,940 KB
testcase_04 AC 4 ms
6,940 KB
testcase_05 AC 7 ms
6,940 KB
testcase_06 AC 4 ms
6,940 KB
testcase_07 AC 5 ms
6,940 KB
testcase_08 AC 7 ms
6,940 KB
testcase_09 AC 7 ms
6,944 KB
testcase_10 AC 7 ms
6,944 KB
testcase_11 AC 103 ms
6,940 KB
testcase_12 AC 222 ms
10,936 KB
testcase_13 AC 464 ms
18,668 KB
testcase_14 AC 221 ms
11,864 KB
testcase_15 AC 107 ms
7,616 KB
testcase_16 AC 457 ms
15,560 KB
testcase_17 AC 450 ms
13,824 KB
testcase_18 AC 213 ms
8,960 KB
testcase_19 AC 216 ms
8,604 KB
testcase_20 AC 449 ms
13,964 KB
testcase_21 AC 454 ms
19,184 KB
testcase_22 AC 459 ms
18,772 KB
testcase_23 AC 516 ms
19,740 KB
testcase_24 AC 468 ms
19,852 KB
testcase_25 AC 463 ms
18,780 KB
testcase_26 AC 462 ms
19,312 KB
testcase_27 AC 468 ms
19,328 KB
testcase_28 AC 456 ms
19,052 KB
testcase_29 AC 456 ms
18,776 KB
testcase_30 AC 459 ms
20,124 KB
testcase_31 AC 2 ms
6,944 KB
testcase_32 AC 1 ms
6,940 KB
testcase_33 AC 8 ms
6,944 KB
testcase_34 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004004004004004LL;
double EPS = 1e-12;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

// 手元環境(Visual Studio)
#ifdef _MSC_VER
#include "local.hpp"
// 提出用(gcc)
#else
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_list2D(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
#endif


//【階乗など(法が大きな素数)】
/*
* Factorial_mint(int n_max) : O(n_max)
*	n_max! まで計算可能として初期化する.
*
* mint fact(int n) : O(1)
*	n! を返す.
*
* mint fact_inv(int n) : O(1)
*	1/n! を返す(n が負なら 0 を返す)
*
* mint inv(int n) : O(1)
*	1/n を返す.
*
* mint perm(int n, int r) : O(1)
*	順列の数 nPr を返す.
*
* mint bin(int n, int r) : O(1)
*	二項係数 nCr を返す.
*
* mint mul(vi rs) : O(|rs|)
*	多項係数 nC[rs] を返す.(n = Σrs)
*/
class Factorial_mint {
	// 階乗,階乗の逆数,逆数の値を保持するテーブル
	int n_max;
	vm fac, fac_inv;

public:
	// n! までの階乗とその逆数を前計算しておく.O(n)
	Factorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) {
		// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b

		fac[0] = 1;
		repi(i, 1, n) fac[i] = fac[i - 1] * i;

		fac_inv[n] = fac[n].inv();
		repir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1);
	}
	Factorial_mint() : n_max(0) {} // ダミー

	// n! を返す.
	mint fact(int n) const {
		// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b

		Assert(0 <= n && n <= n_max);
		return fac[n];
	}

	// 1/n! を返す(n が負なら 0 を返す)
	mint fact_inv(int n) const {
		// verify : https://atcoder.jp/contests/abc289/tasks/abc289_h

		Assert(n <= n_max);
		if (n < 0) return 0;
		return fac_inv[n];
	}

	// 1/n を返す.
	mint inv(int n) const {
		// verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d

		Assert(0 < n && n <= n_max);
		return fac[n - 1] * fac_inv[n];
	}

	// 順列の数 nPr を返す.
	mint perm(int n, int r) const {
		Assert(n <= n_max);

		if (r < 0 || n - r < 0) return 0;
		return fac[n] * fac_inv[n - r];
	}

	// 二項係数 nCr を返す.
	mint bin(int n, int r) const {
		// verify : https://atcoder.jp/contests/abc034/tasks/abc034_c

		Assert(n <= n_max);
		if (r < 0 || n - r < 0) return 0;
		return fac[n] * fac_inv[r] * fac_inv[n - r];
	}

	// 多項係数 nC[rs] を返す.
	mint mul(const vi& rs) const {
		// verify : https://yukicoder.me/problems/no/2141

		if (*min_element(all(rs)) < 0) return 0;
		int n = accumulate(all(rs), 0);
		Assert(n <= n_max);

		mint res = fac[n];
		repe(r, rs) res *= fac_inv[r];

		return res;
	}
};


//【k 個組の下から桁 DP,桁上げ状態,数え上げ(mod998244353)】O(n k log k)
/*
* 2 進数で n 桁の数 S, X について,総和が S,総 XOR が X になる非負整数の k 個組 d[0..k) の個数を返す.
*/
mint count_tuple_sum(const string& S, const string& X, int k) {
	int n = sz(S);

	// dp[i][c] : 以下の条件を満たす数の個数:
	//	i : 下からの桁 D[i..n) まで決まっている(D = Σd[0..k) とおく)
	//  c : D[i] からの桁上げの大きさ(k 未満)
	vvm dp(n + 1, vm(k));
	dp[n][0] = 1;

	Factorial_mint fm(k);

	// coef[b][j] : 総 XOR が b,総和が j になるような d のある桁の定め方
	vvm coef(2, vm(k + 1));
	repi(j, 0, k) coef[j % 2][j] = fm.bin(k, j);

	// 下の桁から順に配る DP
	repir(i, n - 1, 0) {
		int s = S[i] - '0';
		int x = X[i] - '0';

		// ndp[j] : D[i] からの桁上げを保留した状態での D[i] = j である d[0..k) の個数
		// 桁上げを保留しているので,D[i+1] からの桁上げと Σd[i] とで j は最大 2*k-1 になる.
		vm ndp = convolution(dp[i + 1], coef[x]);

		// これらのうち,総和 mod 2 が S[i] に等しいものだけを残し,桁上げの大きさを半分にする.
		for (int j = s; j < 2 * k; j += 2) {
			dp[i][j / 2] = ndp[j];
		}
	}

	return dp[0][0];
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	int n; ll b, c;
	cin >> n >> b >> c;

	string B = bitset<60>(b).to_string();
	string C = bitset<60>(c).to_string();
	
	cout << count_tuple_sum(B, C, n) << endl;
}
0