結果

問題 No.1938 Lagrange Sum
ユーザー 👑 emthrmemthrm
提出日時 2023-03-08 21:47:32
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,025 ms / 3,000 ms
コード長 5,882 bytes
コンパイル時間 2,925 ms
コンパイル使用メモリ 251,760 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-18 02:39:30
合計ジャッジ時間 18,024 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1,025 ms
5,248 KB
testcase_01 AC 1,024 ms
5,376 KB
testcase_02 AC 1,023 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 639 ms
5,376 KB
testcase_06 AC 705 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 141 ms
5,376 KB
testcase_09 AC 44 ms
5,376 KB
testcase_10 AC 945 ms
5,376 KB
testcase_11 AC 156 ms
5,376 KB
testcase_12 AC 958 ms
5,376 KB
testcase_13 AC 963 ms
5,376 KB
testcase_14 AC 329 ms
5,376 KB
testcase_15 AC 26 ms
5,376 KB
testcase_16 AC 884 ms
5,376 KB
testcase_17 AC 314 ms
5,376 KB
testcase_18 AC 317 ms
5,376 KB
testcase_19 AC 914 ms
5,376 KB
testcase_20 AC 913 ms
5,376 KB
testcase_21 AC 13 ms
5,376 KB
testcase_22 AC 2 ms
5,376 KB
testcase_23 AC 9 ms
5,376 KB
testcase_24 AC 891 ms
5,376 KB
testcase_25 AC 2 ms
5,376 KB
testcase_26 AC 2 ms
5,376 KB
testcase_27 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <int M>
struct MInt {
  unsigned int v;

  MInt() : v(0) {}
  MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}

  static constexpr int get_mod() { return M; }
  static void set_mod(const int divisor) { assert(divisor == M); }

  static void init(const int x) {
    inv<true>(x);
    fact(x);
    fact_inv(x);
  }

  template <bool MEMOIZES = false>
  static MInt inv(const int n) {
// #if __cplusplus >= 201703L
//     assert(0 <= n && n < M && std::gcd(n, M) == 1);
// #else
//     assert(0 <= n && n < M && std::__gcd(n, M) == 1);
// #endif  // __cplusplus >= 201703L
    static std::vector<MInt> inverse{0, 1};
    const int prev = inverse.size();
    if (n < prev) return inverse[n];
    const auto memoize = [prev, n]() -> void {
      // "n!" and "M" must be disjoint.
      inverse.resize(n + 1);
      for (int i = prev; i <= n; ++i) {
        inverse[i] = -inverse[M % i] * (M / i);
      }
    };
#if __cplusplus >= 201703L
    if constexpr (MEMOIZES) {
      memoize();
      return inverse[n];
    }
#else
    if (MEMOIZES) {
      memoize();
      return inverse[n];
    }
#endif  // __cplusplus >= 201703L
    int u = 1, v = 0;
    for (unsigned int a = n, b = M; b;) {
      const unsigned int q = a / b;
      std::swap(a -= q * b, b);
      std::swap(u -= q * v, v);
    }
    return u;
  }

  static MInt fact(const int n) {
    static std::vector<MInt> factorial{1};
    const int prev = factorial.size();
    if (n >= prev) {
      factorial.resize(n + 1);
      for (int i = prev; i <= n; ++i) {
        factorial[i] = factorial[i - 1] * i;
      }
    }
    return factorial[n];
  }

  static MInt fact_inv(const int n) {
    static std::vector<MInt> f_inv{1};
    const int prev = f_inv.size();
    if (n >= prev) {
      f_inv.resize(n + 1);
      f_inv[n] = inv(fact(n).v);
      for (int i = n; i > prev; --i) {
        f_inv[i - 1] = f_inv[i] * i;
      }
    }
    return f_inv[n];
  }

  static MInt nCk(const int n, const int k) {
    if (n < 0 || n < k || k < 0) return 0;
    return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
                                  fact_inv(n - k) * fact_inv(k));
  }
  static MInt nPk(const int n, const int k) {
    return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);
  }
  static MInt nHk(const int n, const int k) {
    return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));
  }

  static MInt large_nCk(long long n, const int k) {
    if (n < 0 || n < k || k < 0) return 0;
    inv<true>(k);
    MInt res = 1;
    for (int i = 1; i <= k; ++i) {
      res *= inv(i) * n--;
    }
    return res;
  }

  MInt pow(long long exponent) const {
    MInt res = 1, tmp = *this;
    for (; exponent > 0; exponent >>= 1) {
      if (exponent & 1) res *= tmp;
      tmp *= tmp;
    }
    return res;
  }

  MInt& operator+=(const MInt& x) {
    if (static_cast<int>(v += x.v) >= M) v -= M;
    return *this;
  }
  MInt& operator-=(const MInt& x) {
    if (static_cast<int>(v += M - x.v) >= M) v -= M;
    return *this;
  }
  MInt& operator*=(const MInt& x) {
    v = static_cast<unsigned long long>(v) * x.v % M;
    return *this;
  }
  MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }

  bool operator==(const MInt& x) const { return v == x.v; }
  bool operator!=(const MInt& x) const { return v != x.v; }
  bool operator<(const MInt& x) const { return v < x.v; }
  bool operator<=(const MInt& x) const { return v <= x.v; }
  bool operator>(const MInt& x) const { return v > x.v; }
  bool operator>=(const MInt& x) const { return v >= x.v; }

  MInt& operator++() {
    if (static_cast<int>(++v) == M) v = 0;
    return *this;
  }
  MInt operator++(int) {
    const MInt res = *this;
    ++*this;
    return res;
  }
  MInt& operator--() {
    v = (v == 0 ? M - 1 : v - 1);
    return *this;
  }
  MInt operator--(int) {
    const MInt res = *this;
    --*this;
    return res;
  }

  MInt operator+() const { return *this; }
  MInt operator-() const { return MInt(v ? M - v : 0); }

  MInt operator+(const MInt& x) const { return MInt(*this) += x; }
  MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
  MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
  MInt operator/(const MInt& x) const { return MInt(*this) /= x; }

  friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
    return os << x.v;
  }
  friend std::istream& operator>>(std::istream& is, MInt& x) {
    long long v;
    is >> v;
    x = MInt(v);
    return is;
  }
};
using ModInt = MInt<MOD>;

int main() {
  int n, X; cin >> n >> X;
  vector<int> x(n), y(n); REP(i, n) cin >> x[i] >> y[i];
  vector<ModInt> a(n, 1), b(n, 1);
  REP(i, n) REP(k, n) {
    if (k != i) a[i] *= X - x[k];
  }
  REP(i, n) {
    REP(k, n) {
      if (k != i) b[i] *= x[i] - x[k];
    }
    b[i] = ModInt(y[i]) / b[i];
  }
  const ModInt cov = inner_product(ALL(a), b.begin(), ModInt(0)) / n - reduce(ALL(a), ModInt(0)) / n * reduce(ALL(b), ModInt(0)) / n;
  cout << cov * n * n << '\n';
  return 0;
}
0