結果
| 問題 |
No.2243 Coaching Schedule
|
| コンテスト | |
| ユーザー |
shobonvip
|
| 提出日時 | 2023-03-10 00:38:47 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 1,775 ms / 4,000 ms |
| コード長 | 2,169 bytes |
| コンパイル時間 | 139 ms |
| コンパイル使用メモリ | 82,024 KB |
| 実行使用メモリ | 125,952 KB |
| 最終ジャッジ日時 | 2024-09-18 03:07:47 |
| 合計ジャッジ時間 | 17,216 ms |
|
ジャッジサーバーID (参考情報) |
judge6 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 37 |
ソースコード
# FFT が遅い
mod = 998244353
g = 3
ginv = 332748118
W = [pow(g, (mod-1)>>i, mod) for i in range(24)]
Winv = [pow(ginv, (mod-1)>>i, mod) for i in range(24)]
def fft(k, f):
for l in range(k, 0, -1):
d = 1<<l-1
U = [1]
for i in range(d):
U.append(U[-1]*W[l]%mod)
for i in range(1<<k-l):
for j in range(d):
s = i*2*d+j
f[s], f[s+d] = (f[s]+f[s+d])%mod, U[j]*(f[s]-f[s+d])%mod
def fftinv(k, f):
for l in range(1, k+1):
d = 1<<l-1
for i in range(1<<k-l):
u = 1
for j in range(i*2*d, (i*2+1)*d):
f[j+d] *= u
f[j], f[j+d] = (f[j]+f[j+d])%mod, (f[j]-f[j+d])%mod
u *= Winv[l]
u %= mod
def convolution(a, b):
le = len(a)+len(b)-1
k = le.bit_length()
n = 1<<k
a = a+[0]*(n-len(a))
b = b+[0]*(n-len(b))
fft(k, a)
fft(k, b)
for i in range(n):
a[i] *= b[i]
a[i] %= mod
fftinv(k, a)
ninv = pow(n, mod-2, mod)
for i in range(le):
a[i] *= ninv
a[i] %= mod
return a[:le]
mod = 998244353
N = 10**6 + 5
fact = [1]*(N+1)
factinv = [1]*(N+1)
for i in range(2, N+1):
fact[i] = fact[i-1] * i % mod
factinv[-1] = pow(fact[-1], mod-2, mod)
for i in range(N-1, 1, -1):
factinv[i] = factinv[i+1] * (i+1) % mod
def cmb(a, b):
if (a < b) or (b < 0):
return 0
return fact[a] * factinv[b] % mod * factinv[a-b] % mod
# ここから本編.
m,n = map(int,input().split())
a = list(map(int,input().split()))
# 頻度ごとに集計しています O(N+M)
c = [0] * m
for i in range(n):
c[a[i]-1] += 1
cl = [0] * (n+1)
for i in range(m):
cl[c[i]] += 1
cv = []
cmax = 0
for i in range(n+1):
if cl[i] > 0:
cv.append((i, cl[i]))
cmax = max(cmax, i)
# 想定解通りにやります O(N^1.5 log N) ? わからんぬ
d = [1] * (n+1)
for i in range(n+1):
if cmax > i:
d[i] = 0
continue
for j, cnt in cv:
d[i] *= pow(fact[i] * factinv[i-j] % mod, cnt, mod)
d[i] %= mod
# またまたFFTによって練習の日を固定したときの数え上げを計算します O(N log N)
f = [d[i] * factinv[i] % mod for i in range(n + 1)]
g = [(-1) ** (i % 2) * factinv[i] % mod for i in range(n + 1)]
fg = convolution(f, g)
ans = 0
for i in range(n + 1):
ans += fact[i] * fg[i] % mod
print(ans % mod)
shobonvip