結果
問題 | No.2243 Coaching Schedule |
ユーザー | shotoyoo |
提出日時 | 2023-03-10 23:39:40 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 19,758 bytes |
コンパイル時間 | 3,688 ms |
コンパイル使用メモリ | 267,120 KB |
実行使用メモリ | 10,752 KB |
最終ジャッジ日時 | 2024-09-18 05:44:02 |
合計ジャッジ時間 | 9,531 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 6 ms
5,376 KB |
testcase_05 | TLE | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
ソースコード
bool TEST = false; using namespace std; #include<bits/stdc++.h> #include<fstream> #define rep(i,n) for(ll (i)=0;(i)<(ll)(n);i++) #define rrep(i,n) for(ll (i)=(ll)(n)-1;(i)>=0;i--) #define range(i,start,end,step) for(ll (i)=start;(i)<(ll)(end);(i)+=(step)) #define rrange(i,start,end,step) for(ll (i)=start;(i)>(ll)(end);(i)+=(step)) #define dump(x) cerr << "Line " << __LINE__ << ": " << #x << " = " << (x) << "\n"; #define spa << " " << #define fi first #define se second #define all(a) (a).begin(),(a).end() #define allr(a) (a).rbegin(),(a).rend() template <typename T> T SUM(vector<T> &A) { T sum = T(0); for (auto &&a: A) sum += a; return sum; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) using ld = long double; using ll = long long; using ull = unsigned long long; using pii = pair<int, int>; using pll = pair<ll, ll>; using pdd = pair<ld, ld>; template<typename T> using V = vector<T>; template<typename T> using VV = V<V<T>>; template<typename T, typename T2> using P = pair<T, T2>; template<typename T, typename T2> using UM = unordered_map<T, T2>; template<typename T> using PQ = priority_queue<T, V<T>, greater<T>>; template<typename T> using rPQ = priority_queue<T, V<T>, less<T>>; template<class T>vector<T> make_vec(size_t a){return vector<T>(a);} template<class T, class... Ts>auto make_vec(size_t a, Ts... ts){return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));} template<class SS, class T> ostream& operator << (ostream& os, const pair<SS, T> v){os << "(" << v.first << ", " << v.second << ")"; return os;} template<typename T> ostream& operator<<(ostream &os, const vector<T> &v) { for (auto &e : v) os << e << ' '; return os; } template<class T> ostream& operator<<(ostream& os, const vector<vector<T>> &v){ for(auto &e : v){os << e << "\n";} return os;} struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; template <class T> void UNIQUE(vector<T> &x) {sort(all(x));x.erase(unique(all(x)), x.end());} template<class T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; } template<class T> bool chmin(T &a, const T &b) { if (a>b) { a=b; return 1; } return 0; } void fail() { cout << -1 << '\n'; exit(0); } inline int popcount(const int x) { return __builtin_popcount(x); } inline int popcount(const ll x) { return __builtin_popcountll(x); } template<typename T> void debug(vector<vector<T>>&v){for(ll i=0;i<v.size();i++) {cerr<<v[i][0];for(ll j=1;j<v[i].size();j++)cerr spa v[i][j];cerr<<"\n";}}; template<typename T> void debug(vector<T>&v){if(v.size()!=0)cerr<<v[0]; for(ll i=1;i<v.size();i++)cerr spa v[i]; cerr<<"\n";}; template<typename T> void debug(priority_queue<T>&v){V<T> vals; while(!v.empty()) {cerr << v.top() << " "; vals.push_back(v.top()); v.pop();} cerr<<"\n"; for(auto val: vals) v.push(val);} template<typename T, typename T2> void debug(map<T,T2>&v){for(auto [k,v]: v) cerr << k spa v << "\n"; cerr<<"\n";} template<typename T, typename T2> void debug(unordered_map<T,T2>&v){for(auto [k,v]: v) cerr << k spa v << "\n";cerr<<"\n";} V<int> listrange(int n) {V<int> res(n); rep(i,n) res[i]=i; return res;} string YES = "Yes"; string NO = "No"; void pans(bool v){if (v) cout << YES << "\n"; else cout << NO << "\n";} template<typename T> P<T,T> divmod(T a, T b) {return make_pair(a/b, a%b);} const ll INF = (1ll<<62); // const ld EPS = 1e-10; // const ld PI = acos(-1.0); template< typename Mint > struct NumberTheoreticTransformFriendlyModInt { static vector< Mint > dw, idw; static int max_base; static Mint root; NumberTheoreticTransformFriendlyModInt() = default; static void init() { if(dw.empty()) { const unsigned mod = Mint::get_mod(); assert(mod >= 3 && mod % 2 == 1); auto tmp = mod - 1; max_base = 0; while(tmp % 2 == 0) tmp >>= 1, max_base++; root = 2; while(root.pow((mod - 1) >> 1) == 1) root += 1; assert(root.pow(mod - 1) == 1); dw.resize(max_base); idw.resize(max_base); for(int i = 0; i < max_base; i++) { dw[i] = -root.pow((mod - 1) >> (i + 2)); idw[i] = Mint(1) / dw[i]; } } } static void ntt(vector< Mint > &a) { init(); const int n = (int) a.size(); assert((n & (n - 1)) == 0); assert(__builtin_ctz(n) <= max_base); for(int m = n; m >>= 1;) { Mint w = 1; for(int s = 0, k = 0; s < n; s += 2 * m) { for(int i = s, j = s + m; i < s + m; ++i, ++j) { auto x = a[i], y = a[j] * w; a[i] = x + y, a[j] = x - y; } w *= dw[__builtin_ctz(++k)]; } } } static void intt(vector< Mint > &a, bool f = true) { init(); const int n = (int) a.size(); assert((n & (n - 1)) == 0); assert(__builtin_ctz(n) <= max_base); for(int m = 1; m < n; m *= 2) { Mint w = 1; for(int s = 0, k = 0; s < n; s += 2 * m) { for(int i = s, j = s + m; i < s + m; ++i, ++j) { auto x = a[i], y = a[j]; a[i] = x + y, a[j] = (x - y) * w; } w *= idw[__builtin_ctz(++k)]; } } if(f) { Mint inv_sz = Mint(1) / n; for(int i = 0; i < n; i++) a[i] *= inv_sz; } } static vector< Mint > multiply(vector< Mint > a, vector< Mint > b) { int need = a.size() + b.size() - 1; int nbase = 1; while((1 << nbase) < need) nbase++; int sz = 1 << nbase; a.resize(sz, 0); b.resize(sz, 0); ntt(a); ntt(b); Mint inv_sz = Mint(1) / sz; for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz; intt(a, false); a.resize(need); return a; } }; template< typename Mint > vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::dw = vector< Mint >(); template< typename Mint > vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::idw = vector< Mint >(); template< typename Mint > int NumberTheoreticTransformFriendlyModInt< Mint >::max_base = 0; template< typename Mint > Mint NumberTheoreticTransformFriendlyModInt< Mint >::root = Mint(); template< typename T > struct FormalPowerSeriesFriendlyNTT : vector< T > { using vector< T >::vector; using P = FormalPowerSeriesFriendlyNTT; using NTT = NumberTheoreticTransformFriendlyModInt< T >; P pre(int deg) const { return P(begin(*this), begin(*this) + min((int) this->size(), deg)); } P rev(int deg = -1) const { P ret(*this); if(deg != -1) ret.resize(deg, T(0)); reverse(begin(ret), end(ret)); return ret; } void shrink() { while(this->size() && this->back() == T(0)) this->pop_back(); } P operator+(const P &r) const { return P(*this) += r; } P operator+(const T &v) const { return P(*this) += v; } P operator-(const P &r) const { return P(*this) -= r; } P operator-(const T &v) const { return P(*this) -= v; } P operator*(const P &r) const { return P(*this) *= r; } P operator*(const T &v) const { return P(*this) *= v; } P operator/(const P &r) const { return P(*this) /= r; } P operator%(const P &r) const { return P(*this) %= r; } P &operator+=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < r.size(); i++) (*this)[i] += r[i]; return *this; } P &operator-=(const P &r) { if(r.size() > this->size()) this->resize(r.size()); for(int i = 0; i < r.size(); i++) (*this)[i] -= r[i]; return *this; } // https://judge.yosupo.jp/problem/convolution_mod P &operator*=(const P &r) { if(this->empty() || r.empty()) { this->clear(); return *this; } auto ret = NTT::multiply(*this, r); return *this = {begin(ret), end(ret)}; } P &operator/=(const P &r) { if(this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n); } P &operator%=(const P &r) { *this -= *this / r * r; shrink(); return *this; } // https://judge.yosupo.jp/problem/division_of_polynomials pair< P, P > div_mod(const P &r) { P q = *this / r; P x = *this - q * r; x.shrink(); return make_pair(q, x); } P operator-() const { P ret(this->size()); for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i]; return ret; } P &operator+=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] += r; return *this; } P &operator-=(const T &r) { if(this->empty()) this->resize(1); (*this)[0] -= r; return *this; } P &operator*=(const T &v) { for(int i = 0; i < this->size(); i++) (*this)[i] *= v; return *this; } P dot(P r) const { P ret(min(this->size(), r.size())); for(int i = 0; i < ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } P operator>>(int sz) const { if(this->size() <= sz) return {}; P ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } P operator<<(int sz) const { P ret(*this); ret.insert(ret.begin(), sz, T(0)); return ret; } T operator()(T x) const { T r = 0, w = 1; for(auto &v : *this) { r += w * v; w *= x; } return r; } P diff() const { const int n = (int) this->size(); P ret(max(0, n - 1)); for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i); return ret; } P integral() const { const int n = (int) this->size(); P ret(n + 1); ret[0] = T(0); for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1); return ret; } // https://judge.yosupo.jp/problem/inv_of_formal_power_series // F(0) must not be 0 P inv(int deg = -1) const { assert(((*this)[0]) != T(0)); const int n = (int) this->size(); if(deg == -1) deg = n; P res(deg); res[0] = {T(1) / (*this)[0]}; for(int d = 1; d < deg; d <<= 1) { P f(2 * d), g(2 * d); for(int j = 0; j < min(n, 2 * d); j++) f[j] = (*this)[j]; for(int j = 0; j < d; j++) g[j] = res[j]; NTT::ntt(f); NTT::ntt(g); f = f.dot(g); NTT::intt(f); for(int j = 0; j < d; j++) f[j] = 0; NTT::ntt(f); for(int j = 0; j < 2 * d; j++) f[j] *= g[j]; NTT::intt(f); for(int j = d; j < min(2 * d, deg); j++) res[j] = -f[j]; } return res; } // https://judge.yosupo.jp/problem/log_of_formal_power_series // F(0) must be 1 P log(int deg = -1) const { assert((*this)[0] == T(1)); const int n = (int) this->size(); if(deg == -1) deg = n; return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } // https://judge.yosupo.jp/problem/sqrt_of_formal_power_series P sqrt(int deg = -1, const function< T(T) > &get_sqrt = [](T) { return T(1); }) const { const int n = (int) this->size(); if(deg == -1) deg = n; if((*this)[0] == T(0)) { for(int i = 1; i < n; i++) { if((*this)[i] != T(0)) { if(i & 1) return {}; if(deg - i / 2 <= 0) break; auto ret = (*this >> i).sqrt(deg - i / 2, get_sqrt); if(ret.empty()) return {}; ret = ret << (i / 2); if(ret.size() < deg) ret.resize(deg, T(0)); return ret; } } return P(deg, 0); } auto sqr = T(get_sqrt((*this)[0])); if(sqr * sqr != (*this)[0]) return {}; P ret{sqr}; T inv2 = T(1) / T(2); for(int i = 1; i < deg; i <<= 1) { ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2; } return ret.pre(deg); } P sqrt(const function< T(T) > &get_sqrt, int deg = -1) const { return sqrt(deg, get_sqrt); } // https://judge.yosupo.jp/problem/exp_of_formal_power_series // F(0) must be 0 P exp(int deg = -1) const { if(deg == -1) deg = this->size(); assert((*this)[0] == T(0)); P inv; inv.reserve(deg + 1); inv.push_back(T(0)); inv.push_back(T(1)); auto inplace_integral = [&](P &F) -> void { const int n = (int) F.size(); auto mod = T::get_mod(); while((int) inv.size() <= n) { int i = inv.size(); inv.push_back((-inv[mod % i]) * (mod / i)); } F.insert(begin(F), T(0)); for(int i = 1; i <= n; i++) F[i] *= inv[i]; }; auto inplace_diff = [](P &F) -> void { if(F.empty()) return; F.erase(begin(F)); T coeff = 1, one = 1; for(int i = 0; i < (int) F.size(); i++) { F[i] *= coeff; coeff += one; } }; P b{1, 1 < (int) this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1}; for(int m = 2; m < deg; m *= 2) { auto y = b; y.resize(2 * m); NTT::ntt(y); z1 = z2; P z(m); for(int i = 0; i < m; ++i) z[i] = y[i] * z1[i]; NTT::intt(z); fill(begin(z), begin(z) + m / 2, T(0)); NTT::ntt(z); for(int i = 0; i < m; ++i) z[i] *= -z1[i]; NTT::intt(z); c.insert(end(c), begin(z) + m / 2, end(z)); z2 = c; z2.resize(2 * m); NTT::ntt(z2); P x(begin(*this), begin(*this) + min< int >(this->size(), m)); inplace_diff(x); x.push_back(T(0)); NTT::ntt(x); for(int i = 0; i < m; ++i) x[i] *= y[i]; NTT::intt(x); x -= b.diff(); x.resize(2 * m); for(int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = T(0); NTT::ntt(x); for(int i = 0; i < 2 * m; ++i) x[i] *= z2[i]; NTT::intt(x); x.pop_back(); inplace_integral(x); for(int i = m; i < min< int >(this->size(), 2 * m); ++i) x[i] += (*this)[i]; fill(begin(x), begin(x) + m, T(0)); NTT::ntt(x); for(int i = 0; i < 2 * m; ++i) x[i] *= y[i]; NTT::intt(x); b.insert(end(b), begin(x) + m, end(x)); } return P{begin(b), begin(b) + deg}; } // https://judge.yosupo.jp/problem/pow_of_formal_power_series P pow(int64_t k, int deg = -1) const { const int n = (int) this->size(); if(deg == -1) deg = n; for(int i = 0; i < n; i++) { if((*this)[i] != T(0)) { T rev = T(1) / (*this)[i]; P ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k)); if(i * k > deg) return P(deg, T(0)); ret = (ret << (i * k)).pre(deg); if(ret.size() < deg) ret.resize(deg, T(0)); return ret; } } return *this; } P mod_pow(int64_t k, P g) const { P modinv = g.rev().inv(); auto get_div = [&](P base) { if(base.size() < g.size()) { base.clear(); return base; } int n = base.size() - g.size() + 1; return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n); }; P x(*this), ret{1}; while(k > 0) { if(k & 1) { ret *= x; ret -= get_div(ret) * g; ret.shrink(); } x *= x; x -= get_div(x) * g; x.shrink(); k >>= 1; } return ret; } // https://judge.yosupo.jp/problem/polynomial_taylor_shift P taylor_shift(T c) const { int n = (int) this->size(); vector< T > fact(n), rfact(n); fact[0] = rfact[0] = T(1); for(int i = 1; i < n; i++) fact[i] = fact[i - 1] * T(i); rfact[n - 1] = T(1) / fact[n - 1]; for(int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * T(i); P p(*this); for(int i = 0; i < n; i++) p[i] *= fact[i]; p = p.rev(); P bs(n, T(1)); for(int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1]; p = (p * bs).pre(n); p = p.rev(); for(int i = 0; i < n; i++) p[i] *= rfact[i]; return p; } }; template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; const int mod = 998244353; using MOD = ModInt<mod>; using FPS = FormalPowerSeriesFriendlyNTT< MOD >; V<MOD> g1; V<MOD> g2; V<MOD> inverse; void prepare(int n) { chmax(n,10); int s = max(2, (int)g1.size()); g1.resize(n+1); g2.resize(n+1); inverse.resize(n+1); g1[0] = g1[1] = g2[0] = g2[1] = 1; inverse[0] = 0; inverse[1] = 1; range(i,s,n+1,1) { g1[i] = g1[i-1]*i; inverse[i] = -inverse[mod%i]*(mod/i); g2[i] = g2[i-1]*inverse[i]; } } template<typename T> MOD cmb(T n, T r) { if (r<0 || r>n) return 0; if (g1.size()<=n) prepare(n); r = min(r, n-r); return g1[n]*g2[r]*g2[n-r]; } template<typename T> MOD perm(T n, T r) { if (r<0 || r>n) return 0; if (g1.size()<=n) prepare(n); return g1[n]*g2[n-r]; } // usage: // FPS f, g; // f.reserve(s+1); // g.reserve(s+1); // rep(j,s+1) { // f.emplace_back(dpa[i][j]); // g.emplace_back(dpb[n-i][j]); // } // auto h = f*g; // multiply functions // V<FPS> fs; // using PI = P<int,int>; // priority_queue<PI, V<PI>, greater<PI>> q; // while (q.size()>=2) { // auto [s,i] = q.top(); // q.pop(); // auto [t,j] = q.top(); // q.pop(); // fs[i] = fs[i] * fs[j]; // q.push(make_pair(fs[i].size(), i)); // // cout << i spa j spa fs[i].size() << endl; // } // auto [ss,ii] = q.top(); // auto f = fs[ii]; // subset sum // m : maximum sum // s : maximum value of elements // FPS f(m+1); // V<int> count(s); // for (auto v : a) count[v]++; // rep(v,s) { // if (count[v]) { // FPS g(v+1); // g[0] = g[v] = 1; // f += g.log(m+1) * count[v]; // } // } // auto h = f.exp(); void Main(){ ll n,m; cin >> m >> n; V<ll> aa(n); V<ll> count(m+1); prepare(n+m+10); ll M = 0; rep(i,n) { cin >> aa[i]; count[aa[i]]++; chmax(M, count[aa[i]]); } V<P<ll,ll>> kv; rep(i,m+1) if (count[i]>0) kv.emplace_back(i,count[i]); FPS a(n+1), b(n+1); rep(i,n+1) { if (i<M) ; else { MOD val = 1; for (auto [k,v] : kv) val *= g2[i-v] * g1[i]; val *= g2[i]; a[i] = val; } b[i] = g2[i] * (i%2==0?1:-1); } auto c = a*b; // debug(a); // debug(b); // debug(c); MOD ans = 0; rep(i,n+1) ans += c[i]*g1[i]; cout << ans << "\n"; } int main(void){ std::ifstream in("tmp_in"); if (TEST) { std::cin.rdbuf(in.rdbuf()); std::cout << std::fixed << std::setprecision(15); } else { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(15); } Main(); }