結果
| 問題 |
No.2239 Friday
|
| ユーザー |
tipstar0125
|
| 提出日時 | 2023-03-12 14:58:47 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
AC
|
| 実行時間 | 39 ms / 2,000 ms |
| コード長 | 3,752 bytes |
| コンパイル時間 | 120 ms |
| コンパイル使用メモリ | 13,312 KB |
| 実行使用メモリ | 12,416 KB |
| 最終ジャッジ日時 | 2024-09-18 07:03:28 |
| 合計ジャッジ時間 | 1,484 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 20 |
ソースコード
from __future__ import annotations
import array
import bisect
import fractions
import heapq
import itertools
import math
import random
import re
import string
import sys
import time
from collections import defaultdict, deque
from functools import lru_cache
sys.setrecursionlimit(10**6)
INF = 10**20
MOD = 10**9 + 7
def read_int_list():
return list(map(int, input().split()))
def read_int():
return int(input())
def read_str_list():
return list(input().split())
def read_str():
return input()
def is_prime(n: int) -> bool:
if n < 2:
return False
i = 2
ok = True
while i * i <= n:
if n % i == 0:
ok = False
i += 1
return ok
def eratosthenes(n: int) -> list[bool]:
is_prime_list = ([False, True] * (n // 2 + 1))[0 : n + 1]
is_prime_list[1] = False
is_prime_list[2] = True
for i in range(3, n + 1, 2):
if not (is_prime_list[i]):
continue
if i * i > n:
break
for k in range(i * i, n + 1, i):
is_prime_list[k] = False
return is_prime_list
def legendre(n: int, p: int) -> int:
cnt = 0
pp = p
while pp <= n:
cnt += n // pp
pp *= p
return cnt
def prime_factorize(n: int) -> defaultdict[int, int]:
nn = n
i = 2
d: defaultdict[int, int] = defaultdict(int)
while i * i <= n:
while nn % i == 0:
d[i] += 1
nn //= i
i += 1
if nn != 1:
d[nn] += 1
return d
def make_divisors(n: int) -> list[int]:
i = 1
ret = []
while i * i <= n:
if n % i == 0:
ret.append(i)
if i != n // i:
ret.append(n // i)
i += 1
ret.sort()
return ret
def gcd(a: int, b: int) -> int:
if a == 0:
return b
else:
return gcd(b % a, a)
def lcm(a: int, b: int) -> int:
return a * b // gcd(a, b)
def align_heap(A: list[int], start: int, end: int):
k = start
while True:
if 2 * k + 2 < end:
p = A[k]
l = A[2 * k + 1]
r = A[2 * k + 2]
m = max(p, l, r)
if m == p:
break
elif m == l:
A[k], A[2 * k + 1] = A[2 * k + 1], A[k]
k = 2 * k + 1
else:
A[k], A[2 * k + 2] = A[2 * k + 2], A[k]
k = 2 * k + 2
elif 2 * k + 1 < end:
p = A[k]
l = A[2 * k + 1]
m = max(p, l)
if m == p:
break
else:
A[k], A[2 * k + 1] = A[2 * k + 1], A[k]
k = 2 * k + 1
else:
break
def build_heap(A: list[int]):
N = len(A)
for x in range(N // 2 - 1, -1, -1):
align_heap(A, x, N)
def heap_sort(A: list[int], M: int):
build_heap(A)
N = len(A)
for i in range(N - 1, 0, -1):
A[0], A[i] = A[i], A[0]
align_heap(A, 0, i)
if i == M:
print(*A)
print(*A)
@lru_cache
def f(x: int) -> int:
if x == 0:
return 0
elif x == 1:
return 1
return f(x - 1) + f(x - 2)
def dfs(pos: int, G: list[list[int]], visited: list[bool], is_chosen: list[bool]):
ok = True
for nxt in G[pos]:
if not visited[nxt]:
visited[nxt] = True
dfs(nxt, G, visited, is_chosen)
ok &= not is_chosen[nxt]
is_chosen[pos] = ok
def solve():
A, B = read_int_list()
D = abs(A - B)
C = A + B - D
ans = abs(C - D)
while C >= 2:
C -= 2
D += 2
ans = min(ans, abs(C - D))
print(ans)
def main():
solve()
# t = read_int()
# for _ in range(t):
# solve()
main()
tipstar0125