結果
問題 | No.526 フィボナッチ数列の第N項をMで割った余りを求める |
ユーザー | AC2K |
提出日時 | 2023-03-12 18:48:43 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 6,155 bytes |
コンパイル時間 | 2,075 ms |
コンパイル使用メモリ | 211,536 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-18 07:10:31 |
合計ジャッジ時間 | 2,793 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 1 ms
6,940 KB |
testcase_06 | AC | 1 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 1 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 1 ms
6,940 KB |
testcase_12 | AC | 1 ms
6,940 KB |
testcase_13 | AC | 1 ms
6,940 KB |
testcase_14 | AC | 2 ms
6,944 KB |
ソースコード
#line 2 "library/template.hpp" #include<bits/stdc++.h> using namespace std; #define rep(i, N) for(int i=0;i<(N);i++) #define all(x) (x).begin(),(x).end() #define popcount(x) __builtin_popcount(x) using i128=__int128_t; using ll = long long; using ld = long double; using graph = vector<vector<int>>; using P = pair<int, int>; constexpr int inf = 1e9; constexpr ll infl = 1e18; constexpr ld eps = 1e-6; const long double pi = acos(-1); constexpr uint64_t MOD = 1e9 + 7; constexpr uint64_t MOD2 = 998244353; constexpr int dx[] = { 1,0,-1,0 }; constexpr int dy[] = { 0,1,0,-1 }; template<class T>inline void chmax(T&x,T y){if(x<y)x=y;} template<class T>inline void chmin(T&x,T y){if(x>y)x=y;} #line 2 "library/math/matrix.hpp" template<typename T> class Matrix { vector<vector<T>> dat; int h = 0, w = 0; public: Matrix(const vector<vector<T>>& dat) : dat(dat), h(dat.size()), w(dat.front().size()) {} Matrix(int h_, int w_, const T& v = T()) : dat(h_, vector<T>(w_, v)){} using mat = Matrix<T>; //access vector<T>& operator[](int i) { return dat[i]; } //operator mat& operator+=(const mat& r) { assert(r.h == this->h); assert(r.w == this->w); for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { dat[i][j] += r.dat[i][j]; } } return (*this); } mat& operator-=(const mat&r){ assert(r.h == this->h); assert(r.w == this->w); for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { dat[i][j] -= r.dat[i][j]; } } return (*this); } mat& operator*=(const mat& r) { int ha = dat.size(), wa = dat.front().size(); int hb = r.dat.size(), wb = r.dat.front().size(); assert(wa == hb); vector<vector<T>> res(ha, vector<T>(wb)); rep(i, ha) rep(j, wb) rep(k, wa) { res[i][j] += dat[i][k] * r.dat[k][j]; } swap(res, dat); return (*this); } mat operator+(const mat& r) { return mat(*this) += r; } mat operator-(const mat& r) { return mat(*this) -= r; } mat operator*(const mat& r) { return mat(*this) *= r; } mat pow(__uint64_t e) const { mat pr(h, h); rep(i, h) { pr[i][i] = 1; } mat pw(*this); while(e){ if(e&1){ pr *= pw; } pw *= pw; e >>= 1; } return pr; } }; #line 2 "library/math/barrett.hpp" namespace internal { //barret reduction class barrett { using u32 = uint32_t; using u64 = uint64_t; u32 m; u64 im; public: explicit barrett() = default; explicit barrett(const u32& m_) :m(m_), im((u64)(-1) / m_ + 1) {} u32 get_mod() const { return m; } u32 mul(u32 a, u32 b) { if (a == 0 || b == 0) { return 0; } u64 z = a; z *= b; #ifdef _MSC_VER u64 x; _umul128(z, im, &x); #else u64 x = (u64)(((__uint128_t)(z)*im) >> 64); #endif u32 v = (u32)(z - x * m); if (v >= m)v += m; return v; } }; } #line 3 "library/math/dynamic_modint.hpp" class dynamic_modint32 { using u32 = uint32_t; using u64 = uint64_t; using i32 = int32_t; using i64 = int64_t; using br = internal::barrett; static br brt; static u32 mod; u32 v; //value public: static void set_mod(const u32& mod_) { brt = br(mod_); mod = mod_; } private: u32 normalize(const i64& x) const { i32 m = x % mod; if (m < 0) { m += mod; } return m; } public: dynamic_modint32() :v(0) { assert(mod); } //modが決定済みである必要がある dynamic_modint32(const i64& v_) :v(normalize(v_)) { assert(mod); } u32 val() const { return v; } using mint = dynamic_modint32; //operators mint& operator=(const i64& r) { v = normalize(r); return (*this); } mint& operator+=(const mint& r) { v += r.v; if (v >= mod) { v -= mod; } return (*this); } mint& operator-=(const mint&r) { v += mod - r.v; if (v >= mod) { v -= mod; } return (*this); } mint& operator*=(const mint& r) { v = brt.mul(v, r.v); return (*this); } mint operator+(const mint& r) const { return mint(*this) += r; } mint operator-(const mint& r) const { return mint(*this) -= r; } mint operator*(const mint& r) const { return mint(*this) *= r; } mint& operator+= (const i64& r) { return (*this) += mint(r); } mint& operator-= (const i64& r) { return (*this) -= mint(r); } mint& operator*= (const i64& r) { return (*this) *= mint(r); } friend mint operator+(const i64& l, const mint& r) { return mint(l) += r; } friend mint operator+(const mint& l, const i64& r) { return mint(l) += r; } friend mint operator-(const i64& l, const mint& r) { return mint(l) -= r; } friend mint operator-(const mint& l, const i64& r) { return mint(l) -= r; } friend mint operator*(const i64& l, const mint& r) { return mint(l) *= r; } friend mint operator*(const mint& l, const i64& r) { return mint(l) += r; } friend ostream& operator<<(ostream& os, const mint& mt) { os << mt.val(); return os; } friend istream& operator>>(istream& is, mint& mt) { i64 v_; is >> v_; mt = v_; return is; } mint pow(u64 e) const { mint res(1), base(*this); while (e) { if (e & 1) { res *= base; } e >>= 1; base *= base; } return base; } mint inv() const { return pow(mod - 2); } mint& operator/=(const mint& r) { return (*this) *= r.inv(); } mint operator/(const mint& r) const { return mint(*this) *= r.inv(); } mint& operator/=(const i64& r) { return (*this) /= mint(r); } friend mint operator/(const mint& l, const i64& r) { return mint(l) /= r; } friend mint operator/(const i64& l, const mint& r) { return mint(l) /= r; } }; typename dynamic_modint32::u32 dynamic_modint32::mod; typename dynamic_modint32::br dynamic_modint32::brt; ///@brief dynamic modint(動的modint) ///@docs docs/math/dynamic_modint.md #line 4 "main.cpp" using mint = dynamic_modint32; int main() { int n,m; cin >> n >> m; mint::set_mod(m); Matrix<mint> A({{1, 1}, {1, 0}}); A = A.pow(n - 2); cout << A[0][0] << '\n'; }