結果
問題 | No.2065 Sum of Min |
ユーザー |
|
提出日時 | 2023-03-13 15:28:49 |
言語 | Go (1.23.4) |
結果 |
AC
|
実行時間 | 410 ms / 2,000 ms |
コード長 | 5,907 bytes |
コンパイル時間 | 10,621 ms |
コンパイル使用メモリ | 231,032 KB |
実行使用メモリ | 38,528 KB |
最終ジャッジ日時 | 2024-09-18 07:34:08 |
合計ジャッジ時間 | 20,636 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 20 |
ソースコード
package mainimport ("bufio""fmt""math/bits""os")func main() {in := bufio.NewReader(os.Stdin)out := bufio.NewWriter(os.Stdout)defer out.Flush()var n, q intfmt.Fscan(in, &n, &q)a := make([]int, n)for i := range a {fmt.Fscan(in, &a[i])}wm := NewWaveletMatrixSum(a, 32)for i := 0; i < q; i++ {var l, r, x intfmt.Fscan(in, &l, &r, &x)l--cnt, sm := wm.CountPrefix(l, r, x, 0)res := (r-l-cnt)*x + smfmt.Fprintln(out, res)}}type E = intfunc (*WaveletMatrixSum) e() E { return 0 }func (*WaveletMatrixSum) op(a, b E) E { return a + b }func (*WaveletMatrixSum) inv(a E) E { return -a }type WaveletMatrixSum struct {n, log intmid []intbv []*BitVectorpreSum [][]int}func NewWaveletMatrixSum(nums []int, log int) *WaveletMatrixSum {nums = append(nums[:0:0], nums...)res := &WaveletMatrixSum{}n := len(nums)mid := make([]int, log)bv := make([]*BitVector, log)for i := 0; i < log; i++ {bv[i] = NewBitVector(n)}preSum := make([][]int, log+1)for i := range preSum {preSum[i] = make([]int, n+1)for j := range preSum[i] {preSum[i][j] = res.e()}}a0, a1 := make([]int, n), make([]int, n)for d := log - 1; d >= -1; d-- {p0, p1 := 0, 0for i := 0; i < n; i++ {preSum[d+1][i+1] = res.op(preSum[d+1][i], nums[i])}if d == -1 {break}for i := 0; i < n; i++ {f := (nums[i] >> d) & 1if f == 0 {a0[p0] = nums[i]p0++} else {bv[d].Set(i)a1[p1] = nums[i]p1++}}mid[d] = p0bv[d].Build()nums, a0 = a0, numsfor i := 0; i < p1; i++ {nums[p0+i] = a1[i]}}res.n, res.log = n, logres.mid, res.bv, res.preSum = mid, bv, preSumreturn res}// 返回区间 [left, right) 中 范围在 [a, b) 中的 (元素的个数, op 的结果)func (wm *WaveletMatrixSum) Count(left, right, a, b, xor int) (int, E) {c1, s1 := wm.CountPrefix(left, right, a, xor)c2, s2 := wm.CountPrefix(left, right, b, xor)return c2 - c1, wm.op(wm.inv(s1), s2)}// 返回区间 [left, right) 中 范围在 [0, x) 中的 (元素的个数, op 的结果)func (wm *WaveletMatrixSum) CountPrefix(left, right, x, xor int) (int, E) {if x >= 1<<wm.log {return right - left, wm.get(wm.log, left, right)}count := 0sum := wm.e()for d := wm.log - 1; d >= 0; d-- {add := (x >> d) & 1f := (xor >> d) & 1l0, r0 := wm.bv[d].Rank(left, 0), wm.bv[d].Rank(right, 0)var kf intif f == 0 {kf = r0 - l0} else {kf = (right - left) - (r0 - l0)}if add == 1 {count += kfif f == 1 {sum = wm.op(sum, wm.get(d, left+wm.mid[d]-l0, right+wm.mid[d]-r0))left, right = l0, r0} else {sum = wm.op(sum, wm.get(d, l0, r0))left, right = left+wm.mid[d]-l0, right+wm.mid[d]-r0}} else {if f == 0 {left, right = l0, r0} else {left, right = left+wm.mid[d]-l0, right+wm.mid[d]-r0}}}return count, sum}// 返回区间 [left, right) 中 第 k 小的元素以及 前 k 个元素(不包括第k小的元素) 的 op 的结果// 如果不存在第 k 小的元素,返回 (-1, *)func (wm *WaveletMatrixSum) Kth(left, right, k, xor int) (int, E) {if k < 0 || k >= right-left {return -1, wm.e()}res, sum := 0, wm.e()for d := wm.log - 1; d >= 0; d-- {f := (xor >> d) & 1l0, r0 := wm.bv[d].Rank(left, 0), wm.bv[d].Rank(right, 0)var kf intif f == 0 {kf = r0 - l0} else {kf = (right - left) - (r0 - l0)}if k < kf {if f == 0 {left, right = l0, r0} else {left, right = left+wm.mid[d]-l0, right+wm.mid[d]-r0}} else {k -= kfres |= 1 << dif f == 1 {sum = wm.op(sum, wm.get(d, left+wm.mid[d]-l0, right+wm.mid[d]-r0))left, right = l0, r0} else {sum = wm.op(sum, wm.get(d, l0, r0))left, right = left+wm.mid[d]-l0, right+wm.mid[d]-r0}}}if k != 0 {sum = wm.op(sum, wm.get(0, left, left+k))}return res, sum}// 返回使得 check(prefixSum) 为 true 的最大时 区间元素的个数.func (wm *WaveletMatrixSum) MaxRightCount(left, right, xor int, check func(E) bool) int {if check(wm.get(wm.log, left, right)) {return right - left}res := 0sum := wm.e()for d := wm.log - 1; d >= 0; d-- {f := (xor >> d) & 1l0, r0 := wm.bv[d].Rank(left, 0), wm.bv[d].Rank(right, 0)var kf intvar loSum Eif f == 0 {kf = r0 - l0loSum = wm.get(d, l0, r0)} else {kf = (right - left) - (r0 - l0)loSum = wm.get(d, left+wm.mid[d]-l0, right+wm.mid[d]-r0)}if check(wm.op(sum, loSum)) {sum = wm.op(sum, loSum)res += kfif f == 1 {left, right = l0, r0} else {left, right = left+wm.mid[d]-l0, right+wm.mid[d]-r0}} else {if f == 0 {left, right = l0, r0} else {left, right = left+wm.mid[d]-l0, right+wm.mid[d]-r0}}}res += wm.binarySearch(func(k int) bool {return check(wm.op(sum, wm.get(0, left, left+k)))}, 0, right-left)return res}func (wm *WaveletMatrixSum) binarySearch(f func(E) bool, ok, ng int) int {for abs(ok-ng) > 1 {x := (ok + ng) >> 1if f(x) {ok, ng = x, ng} else {ok, ng = ok, x}}return ok}func (wm *WaveletMatrixSum) get(d, l, r int) E {return wm.op(wm.inv(wm.preSum[d][l]), wm.preSum[d][r])}func abs(a int) int {if a < 0 {return -a}return a}type BitVector struct {data [][2]int}func NewBitVector(n int) *BitVector {return &BitVector{data: make([][2]int, (n+63)>>5)}}func (bv *BitVector) Set(i int) {bv.data[i>>5][0] |= 1 << (i & 31)}func (bv *BitVector) Build() {for i := 0; i < len(bv.data)-1; i++ {bv.data[i+1][1] = bv.data[i][1] + bits.OnesCount(uint(bv.data[i][0]))}}// [0, k) 内の 1 の個数func (bv *BitVector) Rank(k int, f int) int {a, b := bv.data[k>>5][0], bv.data[k>>5][1]ret := b + bits.OnesCount(uint(a&((1<<(k&31))-1)))if f == 1 {return ret}return k - ret}