結果
問題 | No.1541 ゅゅさんのテスト勉強 |
ユーザー | 草苺奶昔 |
提出日時 | 2023-03-14 14:03:02 |
言語 | Go (1.22.1) |
結果 |
AC
|
実行時間 | 15 ms / 2,000 ms |
コード長 | 6,891 bytes |
コンパイル時間 | 12,075 ms |
コンパイル使用メモリ | 223,908 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-18 08:02:41 |
合計ジャッジ時間 | 12,776 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 1 ms
5,376 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 15 ms
5,376 KB |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 1 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 1 ms
5,376 KB |
testcase_13 | AC | 1 ms
5,376 KB |
testcase_14 | AC | 1 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 1 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 1 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 3 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | AC | 14 ms
5,376 KB |
testcase_30 | AC | 14 ms
5,376 KB |
testcase_31 | AC | 14 ms
5,376 KB |
testcase_32 | AC | 15 ms
5,376 KB |
testcase_33 | AC | 15 ms
5,376 KB |
testcase_34 | AC | 14 ms
5,376 KB |
ソースコード
// https://maspypy.github.io/library/flow/binary_optimization.hpp package main import ( "bufio" "fmt" "os" ) func main() { // https://yukicoder.me/problems/no/1541 // 期末考试 // 有n个考试科目,每学一个科目就能多拿base分 // 对于每个科目i,可以花费cost来学习,学习之后有额外的收益: // 对于科目subjects[j],如果i和subjects[j]都学习了,那么就能多拿到bonus[j]分 // !最大化(总分-花费) // n<=100 in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n, base int fmt.Fscan(in, &n, &base) bo := NewBinaryOptimization(n, false) for i := 0; i < n; i++ { var k, cost int fmt.Fscan(in, &k, &cost) subjects := make([]int, k) for j := 0; j < k; j++ { fmt.Fscan(in, &subjects[j]) subjects[j]-- } bonus := make([]int, k) for j := 0; j < k; j++ { fmt.Fscan(in, &bonus[j]) } bo.Add1(i, 0, base-cost) // 学习的收益 for j := 0; j < k; j++ { bo.Add2(i, subjects[j], 0, 0, 0, bonus[j]) // 一起学习的收益 } } res, _ := bo.Run() fmt.Fprintln(out, res) } const INF int = 1e18 type BinaryOptimization struct { n int source, sink int next int baseCost int edges map[[2]int]int minimize bool } func NewBinaryOptimization(n int, minimize bool) *BinaryOptimization { return &BinaryOptimization{ n: n, source: n, sink: n + 1, next: n + 2, edges: make(map[[2]int]int), minimize: minimize, } } // xi 属于 0, 1 时对应的收益. func (bo *BinaryOptimization) Add1(i, x0, x1 int) { if !bo.minimize { x0, x1 = -x0, -x1 } bo._add_1(i, x0, x1) } // (xi,xj) = (00,01,10,11) 时对应的收益. // !需要满足 x00 + x11 <= x01 + x10. func (bo *BinaryOptimization) Add2(i, j, x00, x01, x10, x11 int) { if !bo.minimize { x00, x01, x10, x11 = -x00, -x01, -x10, -x11 } bo._add_2(i, j, x00, x01, x10, x11) } // (xi,xj,xk) = (000,001,010,011,100,101,110,111) 时对应的收益. func (bo *BinaryOptimization) Add3(i, j, k, x000, x001, x010, x011, x100, x101, x110, x111 int) { if !bo.minimize { x000, x001, x010, x011, x100, x101, x110, x111 = -x000, -x001, -x010, -x011, -x100, -x101, -x110, -x111 } bo._add_3(i, j, k, x000, x001, x010, x011, x100, x101, x110, x111) } // 返回最大收益/最小花费和每个变量的取值0/1. func (bo *BinaryOptimization) Run() (res int, assign []int) { flow := NewMaxFlowGraph(bo.next) for key, cap := range bo.edges { from, to := key[0], key[1] flow.AddEdge(from, to, cap) } res, isCut := flow.Cut(bo.source, bo.sink) res += bo.baseCost res = min(res, INF) assign = make([]int, bo.n) for i := 0; i < bo.n; i++ { if isCut[i] { assign[i] = 1 } else { assign[i] = 0 } } if !bo.minimize { res = -res } return } func (bo *BinaryOptimization) Debug() { fmt.Println("base_cost", bo.baseCost) fmt.Println("source=", bo.source, "sink=", bo.sink) for key, cap := range bo.edges { fmt.Println(key, cap) } } func (bo *BinaryOptimization) _add_1(i, x0, x1 int) { if x0 <= x1 { bo.baseCost += x0 bo._addEdge(bo.source, i, x1-x0) } else { bo.baseCost += x1 bo._addEdge(i, bo.sink, x0-x1) } } // x00 + x11 <= x01 + x10 func (bo *BinaryOptimization) _add_2(i, j, x00, x01, x10, x11 int) { if x00+x11 > x01+x10 { panic("need to satisfy `x00 + x11 <= x01 + x10`.") } bo._add_1(i, x00, x10) bo._add_1(j, 0, x11-x10) bo._addEdge(i, j, x01+x10-x00-x11) } func (bo *BinaryOptimization) _add_3(i, j, k, x000, x001, x010, x011, x100, x101, x110, x111 int) { p := x000 - x100 - x010 - x001 + x110 + x101 + x011 - x111 if p > 0 { bo.baseCost += x000 bo._add_1(i, 0, x100-x000) bo._add_1(j, 0, x010-x000) bo._add_1(k, 0, x001-x000) bo._add_2(i, j, 0, 0, 0, x000+x110-x100-x010) bo._add_2(i, k, 0, 0, 0, x000+x101-x100-x001) bo._add_2(j, k, 0, 0, 0, x000+x011-x010-x001) bo.baseCost -= p bo._addEdge(i, bo.next, p) bo._addEdge(j, bo.next, p) bo._addEdge(k, bo.next, p) bo._addEdge(bo.next, bo.sink, p) bo.next++ } else { p = -p bo.baseCost += x111 bo._add_1(i, x011-x111, 0) bo._add_1(i, x101-x111, 0) bo._add_1(i, x110-x111, 0) bo._add_2(i, j, x111+x001-x011-x101, 0, 0, 0) bo._add_2(i, k, x111+x010-x011-x110, 0, 0, 0) bo._add_2(j, k, x111+x100-x101-x110, 0, 0, 0) bo.baseCost -= p bo._addEdge(bo.next, i, p) bo._addEdge(bo.next, j, p) bo._addEdge(bo.next, k, p) bo._addEdge(bo.source, bo.next, p) bo.next++ } } // t>=0 func (bo *BinaryOptimization) _addEdge(i, j, t int) { if t == 0 { return } key := [2]int{i, j} bo.edges[key] += t bo.edges[key] = min(bo.edges[key], INF) } type Edge struct{ to, rev, cap int } type MaxFlowGraph struct { N int G [][]Edge prog, level []int flowRes int calculated bool } func NewMaxFlowGraph(n int) *MaxFlowGraph { return &MaxFlowGraph{N: n, G: make([][]Edge, n)} } func (g *MaxFlowGraph) AddEdge(from, to, cap int) { g.G[from] = append(g.G[from], Edge{to, len(g.G[to]), cap}) g.G[to] = append(g.G[to], Edge{from, len(g.G[from]) - 1, 0}) } func (g *MaxFlowGraph) Flow(source, sink int) int { if g.calculated { return g.flowRes } g.calculated = true for g.setLevel(source, sink) { g.prog = make([]int, g.N) for { f := g.flowDfs(source, sink, INF) if f == 0 { break } g.flowRes += f g.flowRes = min(g.flowRes, INF) if g.flowRes == INF { return g.flowRes } } } return g.flowRes } // 返回最小割的值和每个点是否属于最小割 func (g *MaxFlowGraph) Cut(source, sink int) (minCut int, isCut []bool) { minCut = g.Flow(source, sink) isCut = make([]bool, g.N) for i := 0; i < g.N; i++ { isCut[i] = g.level[i] < 0 } return } // 残量图的边(from,to,remainCap) func (g *MaxFlowGraph) GetEdges() (edges [][3]int) { for v := 0; v < g.N; v++ { for _, e := range g.G[v] { edges = append(edges, [3]int{v, e.to, e.cap}) } } return } func (g *MaxFlowGraph) setLevel(source, sink int) bool { g.level = make([]int, g.N) for i := range g.level { g.level[i] = -1 } g.level[source] = 0 q := []int{source} for len(q) > 0 { v := q[0] q = q[1:] for _, e := range g.G[v] { if e.cap > 0 && g.level[e.to] == -1 { g.level[e.to] = g.level[v] + 1 if e.to == sink { return true } q = append(q, e.to) } } } return false } func (g *MaxFlowGraph) flowDfs(v, sink, lim int) int { if v == sink { return lim } res := 0 for i := &g.prog[v]; *i < len(g.G[v]); *i++ { e := &g.G[v][*i] if e.cap > 0 && g.level[e.to] == g.level[v]+1 { a := g.flowDfs(e.to, sink, min(lim, e.cap)) if a > 0 { e.cap -= a g.G[e.to][e.rev].cap += a res += a lim -= a if lim == 0 { break } } } } return res } func min(a, b int) int { if a < b { return a } return b } func max(a, b int) int { if a > b { return a } return b }