結果
問題 | No.1618 Convolution? |
ユーザー | 草苺奶昔 |
提出日時 | 2023-03-14 15:27:16 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 1,276 bytes |
コンパイル時間 | 324 ms |
コンパイル使用メモリ | 12,928 KB |
実行使用メモリ | 154,712 KB |
最終ジャッジ日時 | 2024-09-18 08:07:45 |
合計ジャッジ時間 | 28,353 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
ソースコード
from typing import Any, List import numpy as np def convolution(a: Any, b: Any) -> "np.ndarray": """fft求卷积(可能精度不够)""" n = len(a) + len(b) - 1 n = 1 << ((n - 1).bit_length()) c = np.fft.irfft((np.fft.rfft(a, n)) * (np.fft.rfft(b, n)), n) c = np.rint(c).astype(np.int64) return c def convolution_fft_large(a: Any, b: Any) -> List[int]: """精度不够用这个""" a, b = np.array(a, dtype=np.int64), np.array(b, dtype=np.int64) d = 1 << 10 a1, a2 = np.divmod(a, d * d) a2, a3 = np.divmod(a2, d) b1, b2 = np.divmod(b, d * d) b2, b3 = np.divmod(b2, d) aa = convolution(a1, b1) bb = convolution(a2, b2) cc = convolution(a3, b3) dd = convolution(a1 + a2, b1 + b2) - (aa + bb) # type: ignore ee = convolution(a2 + a3, b2 + b3) - (bb + cc) # type: ignore ff = convolution(a1 + a3, b1 + b3) - (aa + cc) # type: ignore h = ((aa * d * d)) * d * d + ((dd * d * d)) * d + (bb + ff) * d * d + ee * d + cc return h.tolist() n = int(input()) A = list(map(int, input().split())) B = list(map(int, input().split())) A = [0] + A B = [0] + B f = list(range(n + 1)) A = convolution_fft_large(A, f) B = convolution_fft_large(B, f) C = [a + b for a, b in zip(A, B)] C = C[1:] print(*C)