結果
問題 | No.1976 Cut then Connect |
ユーザー | 草苺奶昔 |
提出日時 | 2023-03-15 23:53:08 |
言語 | Go (1.22.1) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,688 bytes |
コンパイル時間 | 11,827 ms |
コンパイル使用メモリ | 223,068 KB |
実行使用メモリ | 30,936 KB |
最終ジャッジ日時 | 2024-09-18 08:58:29 |
合計ジャッジ時間 | 16,090 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | WA | - |
testcase_03 | AC | 77 ms
16,384 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | AC | 85 ms
18,488 KB |
testcase_22 | AC | 1 ms
6,944 KB |
testcase_23 | AC | 1 ms
6,940 KB |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | AC | 1 ms
6,940 KB |
testcase_28 | AC | 1 ms
6,944 KB |
testcase_29 | AC | 2 ms
6,944 KB |
testcase_30 | AC | 1 ms
6,940 KB |
testcase_31 | AC | 1 ms
6,944 KB |
testcase_32 | AC | 1 ms
6,940 KB |
ソースコード
package main import ( "bufio" "fmt" "os" ) func main() { // https://yukicoder.me/problems/no/1976 // No.1976 Cut then Connect-连边后树的最小直径 // 给定一棵树, 你可以做以下操作: // 从树的无向边中删除一条边, 使得图的连通分量数变为2 // 对于图的每个连通分量, 选择一个点, 用无向边将这两个点连接起来 // !问: 操作后的树的直径的最小值是多少? // 解: // 1. 固定每条删除的边时,求出每个连通分量的直径后可以求出新直径的最小值 // !此时答案为 max(x,y,ceil(x/2)+ceil(y/2)+1) 其中x,y为连通分量的直径 // 2. 对不同的边,考虑换根dp即可 in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n int fmt.Fscan(in, &n) R := NewRerootingEdge(n) edges := make([][2]int, n-1) for i := 0; i < n-1; i++ { var a, b int fmt.Fscan(in, &a, &b) a, b = a-1, b-1 edges[i] = [2]int{a, b} R.AddEdge(a, b, 1) } // !E: (每个点处的直径,每个点到最远点的距离) R.ReRooting( func() E { return E{0, 0} }, func(dp1, dp2 E) E { return E{max(max(dp1.dia, dp2.dia), dp1.dist+dp2.dist), max(dp1.dist, dp2.dist)} }, func(dp E, from int) E { return dp }, func(dp E, edge [2]int) E { return E{dp.dia, dp.dist + 1} }, ) res := n for _, e := range edges { u, v := e[0], e[1] dia1, dia2 := R.Get(u, v).dia, R.Get(v, u).dia res = min(res, max(max(dia1, dia2), (dia1+1)/2+(dia2+1)/2+1)) } fmt.Fprintln(out, res) } type E = struct{ dia, dist int } type ReRootingEdge struct { tree *_T dp1 []E // 边 parent-root 的子树 root 的 dp值 dp2 []E // 边 parent-root 的子树 parent 的 dp值 dp []E // 顶点 v 的子树的 dp值 } func NewRerootingEdge(n int) *ReRootingEdge { return &ReRootingEdge{tree: _NT(n)} } func (rr *ReRootingEdge) AddEdge(from, to, weight int) { rr.tree.AddEdge(from, to, weight) } // !root 作为根节点时, 子树 v 的 dp 值 func (rr *ReRootingEdge) Get(root, v int) E { if root == v { return rr.dp[v] } if !rr.tree.IsInSubtree(root, v) { return rr.dp1[v] } w := rr.tree.Jump(v, root, 1) return rr.dp2[w] } func (rr *ReRootingEdge) ReRooting( e func() E, op func(dp1, dp2 E) E, composition func(dp E, from int) E, compositionEdge func(dp E, edge [2]int /*next, weight*/) E, ) []E { rr.tree.Build(0) unit := e() N := len(rr.tree.Tree) dp1, dp2, dp := make([]E, N), make([]E, N), make([]E, N) for i := 0; i < N; i++ { dp1[i] = unit dp2[i] = unit dp[i] = unit } V := rr.tree.idToNode par := rr.tree.Parent for i := N - 1; i >= 0; i-- { v := V[i] ch := rr.tree.CollectChild(v) n := len(ch) x1, x2 := make([]E, n+1), make([]E, n+1) for i := range x1 { x1[i] = unit x2[i] = unit } for i := 0; i < n; i++ { x1[i+1] = op(x1[i], dp2[ch[i]]) } for i := n - 1; i >= 0; i-- { x2[i] = op(dp2[ch[i]], x2[i+1]) } for i := 0; i < n; i++ { dp2[ch[i]] = op(x1[i], x2[i+1]) } dp[v] = x2[0] dp1[v] = composition(dp[v], v) for _, e := range rr.tree.Tree[v] { to := e[0] if to == par[v] { dp2[v] = compositionEdge(dp1[v], e) } } } v := V[0] dp[v] = composition(dp[v], v) for _, e := range rr.tree.Tree[v] { to := e[0] dp2[to] = composition(dp2[to], v) } for i := 0; i < N; i++ { v := V[i] for _, e := range rr.tree.Tree[v] { to := e[0] if to == par[v] { continue } x := compositionEdge(dp2[to], e) for _, f := range rr.tree.Tree[to] { to := f[0] if to == par[to] { continue } dp2[to] = op(dp2[to], x) dp2[to] = composition(dp2[to], to) } x = op(dp[to], x) dp[to] = composition(x, to) } } rr.dp1, rr.dp2, rr.dp = dp1, dp2, dp return dp } type _T struct { Tree [][][2]int // (next, weight) Depth []int Parent []int LID, RID []int // 欧拉序[in,out) idToNode []int top, heavySon []int timer int } func _NT(n int) *_T { tree := make([][][2]int, n) lid := make([]int, n) rid := make([]int, n) idToNode := make([]int, n) top := make([]int, n) // 所处轻/重链的顶点(深度最小),轻链的顶点为自身 depth := make([]int, n) // 深度 parent := make([]int, n) // 父结点 heavySon := make([]int, n) // 重儿子 for i := range parent { parent[i] = -1 } return &_T{ Tree: tree, Depth: depth, Parent: parent, LID: lid, RID: rid, idToNode: idToNode, top: top, heavySon: heavySon, } } // 添加无向边 u-v, 边权为w. func (tree *_T) AddEdge(u, v, w int) { tree.Tree[u] = append(tree.Tree[u], [2]int{v, w}) tree.Tree[v] = append(tree.Tree[v], [2]int{u, w}) } // 添加有向边 u->v, 边权为w. func (tree *_T) AddDirectedEdge(u, v, w int) { tree.Tree[u] = append(tree.Tree[u], [2]int{v, w}) } // root:0-based // 当root设为-1时,会从0开始遍历未访问过的连通分量 func (tree *_T) Build(root int) { if root != -1 { tree.build(root, -1, 0) tree.markTop(root, root) } else { for i := 0; i < len(tree.Tree); i++ { if tree.Parent[i] == -1 { tree.build(i, -1, 0) tree.markTop(i, i) } } } } func (tree *_T) LCA(u, v int) int { for { if tree.LID[u] > tree.LID[v] { u, v = v, u } if tree.top[u] == tree.top[v] { return u } v = tree.Parent[tree.top[v]] } } // k: 0-based // 如果不存在第k个祖先,返回-1 func (tree *_T) KthAncestor(root, k int) int { if k > tree.Depth[root] { return -1 } for { u := tree.top[root] if tree.LID[root]-k >= tree.LID[u] { return tree.idToNode[tree.LID[root]-k] } k -= tree.LID[root] - tree.LID[u] + 1 root = tree.Parent[u] } } // 从 from 节点跳向 to 节点,跳过 step 个节点(0-indexed) // 返回跳到的节点,如果不存在这样的节点,返回-1 func (tree *_T) Jump(from, to, step int) int { if step == 1 { if from == to { return -1 } if tree.IsInSubtree(to, from) { return tree.KthAncestor(to, tree.Depth[to]-tree.Depth[from]-1) } return tree.Parent[from] } c := tree.LCA(from, to) dac := tree.Depth[from] - tree.Depth[c] dbc := tree.Depth[to] - tree.Depth[c] if step > dac+dbc { return -1 } if step <= dac { return tree.KthAncestor(from, step) } return tree.KthAncestor(to, dac+dbc-step) } func (tree *_T) CollectChild(root int) []int { res := []int{} for _, e := range tree.Tree[root] { next := e[0] if next != tree.Parent[root] { res = append(res, next) } } return res } func (tree *_T) SubtreeSize(u int) int { return tree.RID[u] - tree.LID[u] } // child 是否在 root 的子树中 (child和root不能相等) func (tree *_T) IsInSubtree(child, root int) bool { return tree.LID[root] <= tree.LID[child] && tree.LID[child] < tree.RID[root] } func (tree *_T) build(cur, pre, dep int) int { subSize, heavySize, heavySon := 1, 0, -1 for _, e := range tree.Tree[cur] { next := e[0] if next != pre { nextSize := tree.build(next, cur, dep+1) subSize += nextSize if nextSize > heavySize { heavySize, heavySon = nextSize, next } } } tree.Depth[cur] = dep tree.heavySon[cur] = heavySon tree.Parent[cur] = pre return subSize } func (tree *_T) markTop(cur, top int) { tree.top[cur] = top tree.LID[cur] = tree.timer tree.idToNode[tree.timer] = cur tree.timer++ if tree.heavySon[cur] != -1 { tree.markTop(tree.heavySon[cur], top) for _, e := range tree.Tree[cur] { next := e[0] if next != tree.heavySon[cur] && next != tree.Parent[cur] { tree.markTop(next, next) } } } tree.RID[cur] = tree.timer } func min(a, b int) int { if a < b { return a } return b } func max(a, b int) int { if a > b { return a } return b }