結果
問題 | No.2240 WAC |
ユーザー | McGregorsh |
提出日時 | 2023-03-16 23:14:14 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 896 ms / 2,000 ms |
コード長 | 12,769 bytes |
コンパイル時間 | 172 ms |
コンパイル使用メモリ | 81,700 KB |
実行使用メモリ | 199,200 KB |
最終ジャッジ日時 | 2024-09-18 09:36:01 |
合計ジャッジ時間 | 19,905 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 162 ms
90,880 KB |
testcase_01 | AC | 163 ms
91,264 KB |
testcase_02 | AC | 167 ms
90,752 KB |
testcase_03 | AC | 164 ms
90,880 KB |
testcase_04 | AC | 171 ms
90,752 KB |
testcase_05 | AC | 164 ms
91,008 KB |
testcase_06 | AC | 168 ms
90,752 KB |
testcase_07 | AC | 170 ms
90,880 KB |
testcase_08 | AC | 169 ms
90,880 KB |
testcase_09 | AC | 170 ms
90,752 KB |
testcase_10 | AC | 864 ms
176,976 KB |
testcase_11 | AC | 867 ms
192,304 KB |
testcase_12 | AC | 896 ms
199,200 KB |
testcase_13 | AC | 353 ms
102,144 KB |
testcase_14 | AC | 300 ms
95,872 KB |
testcase_15 | AC | 552 ms
137,088 KB |
testcase_16 | AC | 702 ms
157,440 KB |
testcase_17 | AC | 530 ms
124,288 KB |
testcase_18 | AC | 325 ms
97,792 KB |
testcase_19 | AC | 351 ms
101,080 KB |
testcase_20 | AC | 531 ms
138,264 KB |
testcase_21 | AC | 432 ms
113,552 KB |
testcase_22 | AC | 491 ms
119,040 KB |
testcase_23 | AC | 399 ms
105,796 KB |
testcase_24 | AC | 499 ms
130,500 KB |
testcase_25 | AC | 574 ms
135,940 KB |
testcase_26 | AC | 364 ms
101,956 KB |
testcase_27 | AC | 311 ms
96,936 KB |
testcase_28 | AC | 346 ms
102,092 KB |
testcase_29 | AC | 269 ms
94,084 KB |
testcase_30 | AC | 400 ms
113,568 KB |
testcase_31 | AC | 757 ms
181,092 KB |
testcase_32 | AC | 299 ms
97,544 KB |
testcase_33 | AC | 478 ms
120,784 KB |
testcase_34 | AC | 558 ms
135,760 KB |
testcase_35 | AC | 253 ms
92,936 KB |
testcase_36 | AC | 578 ms
142,728 KB |
testcase_37 | AC | 544 ms
149,008 KB |
testcase_38 | AC | 295 ms
101,224 KB |
testcase_39 | AC | 634 ms
166,292 KB |
testcase_40 | AC | 441 ms
116,608 KB |
testcase_41 | AC | 518 ms
135,424 KB |
testcase_42 | AC | 552 ms
135,412 KB |
ソースコード
###順序付き多重集合### import math from bisect import bisect_left, bisect_right, insort from typing import Generic, Iterable, Iterator, TypeVar, Union, List T = TypeVar('T') class SortedMultiset(Generic[T]): BUCKET_RATIO = 50 REBUILD_RATIO = 170 def _build(self, a=None) -> None: "Evenly divide `a` into buckets." if a is None: a = list(self) size = self.size = len(a) bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO))) self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)] def __init__(self, a: Iterable[T] = []) -> None: "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)" a = list(a) if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)): a = sorted(a) self._build(a) def __iter__(self) -> Iterator[T]: for i in self.a: for j in i: yield j def __reversed__(self) -> Iterator[T]: for i in reversed(self.a): for j in reversed(i): yield j def __len__(self) -> int: return self.size def __repr__(self) -> str: return "SortedMultiset" + str(self.a) def __str__(self) -> str: s = str(list(self)) return "{" + s[1 : len(s) - 1] + "}" def _find_bucket(self, x: T) -> List[T]: "Find the bucket which should contain x. self must not be empty." for a in self.a: if x <= a[-1]: return a return a def __contains__(self, x: T) -> bool: if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) return i != len(a) and a[i] == x def count(self, x: T) -> int: "Count the number of x." return self.index_right(x) - self.index(x) def add(self, x: T) -> None: "Add an element. / O(√N)" if self.size == 0: self.a = [[x]] self.size = 1 return a = self._find_bucket(x) insort(a, x) self.size += 1 if len(a) > len(self.a) * self.REBUILD_RATIO: self._build() def discard(self, x: T) -> bool: "Remove an element and return True if removed. / O(√N)" if self.size == 0: return False a = self._find_bucket(x) i = bisect_left(a, x) if i == len(a) or a[i] != x: return False a.pop(i) self.size -= 1 if len(a) == 0: self._build() return True def lt(self, x: T) -> Union[T, None]: "Find the largest element < x, or None if it doesn't exist." for a in reversed(self.a): if a[0] < x: return a[bisect_left(a, x) - 1] def le(self, x: T) -> Union[T, None]: "Find the largest element <= x, or None if it doesn't exist." for a in reversed(self.a): if a[0] <= x: return a[bisect_right(a, x) - 1] def gt(self, x: T) -> Union[T, None]: "Find the smallest element > x, or None if it doesn't exist." for a in self.a: if a[-1] > x: return a[bisect_right(a, x)] def ge(self, x: T) -> Union[T, None]: "Find the smallest element >= x, or None if it doesn't exist." for a in self.a: if a[-1] >= x: return a[bisect_left(a, x)] def __getitem__(self, x: int) -> T: "Return the x-th element, or IndexError if it doesn't exist." if x < 0: x += self.size if x < 0: raise IndexError for a in self.a: if x < len(a): return a[x] x -= len(a) raise IndexError def index(self, x: T) -> int: "Count the number of elements < x." ans = 0 for a in self.a: if a[-1] >= x: return ans + bisect_left(a, x) ans += len(a) return ans def index_right(self, x: T) -> int: "Count the number of elements <= x." ans = 0 for a in self.a: if a[-1] > x: return ans + bisect_right(a, x) ans += len(a) return ans ###セグメントツリー### #####segfunc##### def segfunc(x, y): return max(x, y) # 最小値 min(x, y) # 最大値 max(x, y) # 区間和 x + y # 区間積 x * y # 最大公約数 math.gcd(x, y) # 排他的論理和 x ^ y ################# #####ide_ele##### ide_ele = -float('inf') # 最小値 float('inf') # 最大値 -float('inf') # 区間和 0 # 区間積 1 # 最大公約数 0 # 排他的論理和 0 ################# class SegTree: """ init(init_val, ide_ele): 配列init_valで初期化 O(N) update(k, x): k番目の値をxに更新 O(logN) query(l, r): 区間[l, r)をsegfuncしたものを返す O(logN) """ def __init__(self, init_val, segfunc, ide_ele): """ init_val: 配列の初期値 segfunc: 区間にしたい操作 ide_ele: 単位元 n: 要素数 num: n以上の最小の2のべき乗 tree: セグメント木(1-index) """ n = len(init_val) self.segfunc = segfunc self.ide_ele = ide_ele self.num = 1 << (n - 1).bit_length() self.tree = [ide_ele] * 2 * self.num # 配列の値を葉にセット for i in range(n): self.tree[self.num + i] = init_val[i] # 構築していく for i in range(self.num - 1, 0, -1): self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1]) def update(self, k, x): """ k番目の値をxに更新 k: index(0-index) x: update value """ k += self.num self.tree[k] = x while k > 1: self.tree[k >> 1] = self.segfunc(self.tree[k], self.tree[k ^ 1]) k >>= 1 def query(self, l, r): """ [l, r)のsegfuncしたものを得る l: index(0-index) r: index(0-index) """ res = self.ide_ele l += self.num r += self.num while l < r: if l & 1: res = self.segfunc(res, self.tree[l]) l += 1 if r & 1: res = self.segfunc(res, self.tree[r - 1]) l >>= 1 r >>= 1 return res ###UnionFind### class UnionFind: """0-indexed""" def __init__(self, n): self.n = n self.parent = [-1] * n self.__group_count = n # 辺がないとき、連結成分はn個あります def unite(self, x, y): """xとyをマージ""" x = self.root(x) y = self.root(y) if x == y: return 0 self.__group_count -= 1 # 木と木が合体するので、連結成分数が1減ります if self.parent[x] > self.parent[y]: x, y = y, x self.parent[x] += self.parent[y] self.parent[y] = x return self.parent[x] def is_same(self, x, y): """xとyが同じ連結成分か判定""" return self.root(x) == self.root(y) def root(self, x): """xの根を取得""" if self.parent[x] < 0: return x else: self.parent[x] = self.root(self.parent[x]) return self.parent[x] def size(self, x): """xが属する連結成分のサイズを取得""" return -self.parent[self.root(x)] def all_sizes(self) -> List[int]: """全連結成分のサイズのリストを取得 O(N) """ sizes = [] for i in range(self.n): size = self.parent[i] if size < 0: sizes.append(-size) return sizes def groups(self) -> List[List[int]]: """全連結成分の内容のリストを取得 O(N・α(N))""" groups = dict() for i in range(self.n): p = self.root(i) if not groups.get(p): groups[p] = [] groups[p].append(i) return list(groups.values()) def group_count(self) -> int: """連結成分の数を取得 O(1)""" return self.__group_count # 変数を返すだけなので、O(1)です ###素因数分解### def prime_factorize(n: int) -> list: return_list = [] while n % 2 == 0: return_list.append(2) n //= 2 f = 3 while f * f <= n: if n % f == 0: return_list.append(f) n //= f else: f += 2 if n != 1: return_list.append(n) return return_list ###n進数から10進数変換### def base_10(num_n,n): num_10 = 0 for s in str(num_n): num_10 *= n num_10 += int(s) return num_10 ###10進数からn進数変換### def base_n(num_10,n): str_n = '' while num_10: if num_10%n>=10: return -1 str_n += str(num_10%n) num_10 //= n return int(str_n[::-1]) ###複数の数の最大公約数、最小公倍数### from functools import reduce # 最大公約数 def gcd_list(num_list: list) -> int: return reduce(gcd, num_list) # 最小公倍数 def lcm_base(x: int, y: int) -> int: return (x * y) // gcd(x, y) def lcm_list(num_list: list): return reduce(lcm_base, num_list, 1) ###約数列挙### def make_divisors(n): lower_divisors, upper_divisors = [], [] i = 1 while i * i <= n: if n % i == 0: lower_divisors.append(i) if i != n // i: upper_divisors.append(n//i) i += 1 return lower_divisors + upper_divisors[::-1] ###順列### def nPr(n, r): npr = 1 for i in range(n, n-r, -1): npr *= i return npr ###組合せ### def nCr(n, r): factr = 1 r = min(r, n - r) for i in range(r, 1, -1): factr *= i return nPr(n, r)/factr ###組合せMOD### def comb(n,k): nCk = 1 MOD = 10**9+7 for i in range(n-k+1, n+1): nCk *= i nCk %= MOD for i in range(1,k+1): nCk *= pow(i,MOD-2,MOD) nCk %= MOD return nCk ###回転行列### def RotationMatrix(before_x, before_y, d): d = math.radians(d) new_x = before_x * math.cos(d) - before_y * math.sin(d) new_y = before_x * math.sin(d) + before_y * math.cos(d) return new_x, new_y ###ダイクストラ### def daikusutora(N, G, s): dist = [INF] * N que = [(0, s)] dist[s] = 0 while que: c, v = heappop(que) if dist[v] < c: continue for t, cost in G[v]: if dist[v] + cost < dist[t]: dist[t] = dist[v] + cost heappush(que, (dist[t], t)) return dist import sys, re from fractions import Fraction from math import ceil, floor, sqrt, pi, factorial, gcd from copy import deepcopy from collections import Counter, deque, defaultdict from heapq import heapify, heappop, heappush from itertools import accumulate, product, combinations, combinations_with_replacement, permutations from bisect import bisect, bisect_left, bisect_right from functools import reduce from decimal import Decimal, getcontext, ROUND_HALF_UP def i_input(): return int(input()) def i_map(): return map(int, input().split()) def i_list(): return list(i_map()) def i_row(N): return [i_input() for _ in range(N)] def i_row_list(N): return [i_list() for _ in range(N)] def s_input(): return input() def s_map(): return input().split() def s_list(): return list(s_map()) def s_row(N): return [s_input for _ in range(N)] def s_row_str(N): return [s_list() for _ in range(N)] def s_row_list(N): return [list(s_input()) for _ in range(N)] def lcm(a, b): return a * b // gcd(a, b) def get_distance(x1, y1, x2, y2): d = sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) return d def rotate(table): n_fild = [] for x in zip(*table[::-1]): n_fild.append(x) return n_fild sys.setrecursionlimit(10 ** 7) INF = float('inf') MOD = 10 ** 9 + 7 MOD2 = 998244353 def main(): N, M = i_map() S = input() P = (N + M) * 2 AS = SortedMultiset() CS = SortedMultiset() WS = SortedMultiset() for i in range(P): if S[i] == 'W': WS.add(i) elif S[i] == 'A': AS.add(i) else: CS.add(i) for i in range(M): point = AS[0] AS.discard(point) nxt = CS.gt(point) if nxt == None: print('No') exit() else: CS.discard(nxt) for i in range(N): point = WS[0] WS.discard(point) nxt = AS.gt(point) if nxt == None: print('No') exit() else: AS.discard(nxt) print('Yes') if __name__ == '__main__': main()