結果
問題 | No.2249 GCDistance |
ユーザー |
![]() |
提出日時 | 2023-03-17 21:40:10 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 349 ms / 5,000 ms |
コード長 | 5,717 bytes |
コンパイル時間 | 1,877 ms |
コンパイル使用メモリ | 197,908 KB |
最終ジャッジ日時 | 2025-02-11 12:44:34 |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 10 |
ソースコード
#include <bits/stdc++.h>using namespace std;typedef long long ll;#define ALL(x) (x).begin(), (x).end()#ifdef LOCAL#include "debug.hpp"#else#define debug(...) void(0)#endiftemplate <typename T> istream& operator>>(istream& is, vector<T>& v) {for (T& x : v) is >> x;return is;}template <typename T> ostream& operator<<(ostream& os, const vector<T>& v) {for (size_t i = 0; i < v.size(); i++) {os << v[i] << (i + 1 == v.size() ? "" : " ");}return os;}template <typename T> T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; }template <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; }int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }int topbit(long long t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }int botbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }int botbit(long long a) { return a == 0 ? 64 : __builtin_ctzll(a); }int popcount(signed t) { return __builtin_popcount(t); }int popcount(long long t) { return __builtin_popcountll(t); }bool ispow2(int i) { return i && (i & -i) == i; }long long MSK(int n) { return (1LL << n) - 1; }template <class T> T ceil(T x, T y) {assert(y >= 1);return (x > 0 ? (x + y - 1) / y : x / y);}template <class T> T floor(T x, T y) {assert(y >= 1);return (x > 0 ? x / y : (x - y + 1) / y);}template <class T1, class T2> inline bool chmin(T1& a, T2 b) {if (a > b) {a = b;return true;}return false;}template <class T1, class T2> inline bool chmax(T1& a, T2 b) {if (a < b) {a = b;return true;}return false;}template <typename T> void mkuni(vector<T>& v) {sort(v.begin(), v.end());v.erase(unique(v.begin(), v.end()), v.end());}template <typename T> int lwb(const vector<T>& v, const T& x) { return lower_bound(v.begin(), v.end(), x) - v.begin(); }const int INF = (1 << 30) - 1;const long long IINF = (1LL << 60) - 1;const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};const int MOD = 998244353;// const int MOD = 1000000007;#include <numeric>#include <tuple>#include <vector>namespace elementary_math {template <typename T> std::vector<T> divisor(T n) {std::vector<T> res;for (T i = 1; i * i <= n; i++) {if (n % i == 0) {res.emplace_back(i);if (i * i != n) res.emplace_back(n / i);}}return res;}template <typename T> std::vector<std::pair<T, int>> prime_factor(T n) {std::vector<std::pair<T, int>> res;for (T p = 2; p * p <= n; p++) {if (n % p == 0) {res.emplace_back(p, 0);while (n % p == 0) {res.back().second++;n /= p;}}}if (n > 1) res.emplace_back(n, 1);return res;}std::vector<int> osa_k(int n) {std::vector<int> min_factor(n + 1, 0);for (int i = 2; i <= n; i++) {if (min_factor[i]) continue;for (int j = i; j <= n; j += i) {if (!min_factor[j]) {min_factor[j] = i;}}}return min_factor;}std::vector<int> prime_factor(const std::vector<int>& min_factor, int n) {std::vector<int> res;while (n > 1) {res.emplace_back(min_factor[n]);n /= min_factor[n];}return res;}long long modpow(long long x, long long n, long long mod) {assert(0 <= n && 1 <= mod && mod < (1LL << 31));if (mod == 1) return 0;x %= mod;long long res = 1;while (n > 0) {if (n & 1) res = res * x % mod;x = x * x % mod;n >>= 1;}return res;}long long extgcd(long long a, long long b, long long& x, long long& y) {long long d = a;if (b != 0) {d = extgcd(b, a % b, y, x);y -= (a / b) * x;} elsex = 1, y = 0;return d;}long long inv_mod(long long a, long long mod) {assert(1 <= mod);long long x, y;if (extgcd(a, mod, x, y) != 1) return -1;return (mod + x % mod) % mod;}template <typename T> T euler_phi(T n) {auto pf = prime_factor(n);T res = n;for (const auto& p : pf) {res /= p.first;res *= p.first - 1;}return res;}std::vector<int> euler_phi_table(int n) {std::vector<int> res(n + 1, 0);iota(res.begin(), res.end(), 0);for (int i = 2; i <= n; i++) {if (res[i] != i) continue;for (int j = i; j <= n; j += i) res[j] = res[j] / i * (i - 1);}return res;}// minimum i > 0 s.t. x^i \equiv 1 \pmod{m}template <typename T> T order(T x, T m) {T n = euler_phi(m);auto cand = divisor(n);sort(cand.begin(), cand.end());for (auto& i : cand) {if (modpow(x, i, m) == 1) {return i;}}return -1;}template <typename T> std::vector<std::tuple<T, T, T>> quotient_ranges(T n) {std::vector<std::tuple<T, T, T>> res;T m = 1;for (; m * m <= n; m++) res.emplace_back(m, m, n / m);for (; m >= 1; m--) {T l = n / (m + 1) + 1, r = n / m;if (l <= r and std::get<1>(res.back()) < l) res.emplace_back(l, r, n / l);}return res;}} // namespace elementary_mathconst int MAX_N = 10000010;vector<int> table;ll sum[MAX_N];void precalc() {table = elementary_math::euler_phi_table(MAX_N);for (int i = 1; i < MAX_N; i++) sum[i] = sum[i - 1] + table[i];}void solve() {int N;cin >> N;ll tot = 1LL * N * (N - 1) / 2, so = sum[N];ll ans = so + (tot - so) * 2 + 1;cout << ans << '\n';}int main() {cin.tie(0);ios::sync_with_stdio(false);precalc();int T;cin >> T;for (; T--;) solve();return 0;}