結果

問題 No.2249 GCDistance
ユーザー rniyarniya
提出日時 2023-03-17 21:40:10
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 349 ms / 5,000 ms
コード長 5,717 bytes
コンパイル時間 1,877 ms
コンパイル使用メモリ 197,908 KB
最終ジャッジ日時 2025-02-11 12:44:34
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 10
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define ALL(x) (x).begin(), (x).end()
#ifdef LOCAL
#include "debug.hpp"
#else
#define debug(...) void(0)
#endif
template <typename T> istream& operator>>(istream& is, vector<T>& v) {
for (T& x : v) is >> x;
return is;
}
template <typename T> ostream& operator<<(ostream& os, const vector<T>& v) {
for (size_t i = 0; i < v.size(); i++) {
os << v[i] << (i + 1 == v.size() ? "" : " ");
}
return os;
}
template <typename T> T gcd(T x, T y) { return y != 0 ? gcd(y, x % y) : x; }
template <typename T> T lcm(T x, T y) { return x / gcd(x, y) * y; }
int topbit(signed t) { return t == 0 ? -1 : 31 - __builtin_clz(t); }
int topbit(long long t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); }
int botbit(signed a) { return a == 0 ? 32 : __builtin_ctz(a); }
int botbit(long long a) { return a == 0 ? 64 : __builtin_ctzll(a); }
int popcount(signed t) { return __builtin_popcount(t); }
int popcount(long long t) { return __builtin_popcountll(t); }
bool ispow2(int i) { return i && (i & -i) == i; }
long long MSK(int n) { return (1LL << n) - 1; }
template <class T> T ceil(T x, T y) {
assert(y >= 1);
return (x > 0 ? (x + y - 1) / y : x / y);
}
template <class T> T floor(T x, T y) {
assert(y >= 1);
return (x > 0 ? x / y : (x - y + 1) / y);
}
template <class T1, class T2> inline bool chmin(T1& a, T2 b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T1, class T2> inline bool chmax(T1& a, T2 b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <typename T> void mkuni(vector<T>& v) {
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
}
template <typename T> int lwb(const vector<T>& v, const T& x) { return lower_bound(v.begin(), v.end(), x) - v.begin(); }
const int INF = (1 << 30) - 1;
const long long IINF = (1LL << 60) - 1;
const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
const int MOD = 998244353;
// const int MOD = 1000000007;
#include <numeric>
#include <tuple>
#include <vector>
namespace elementary_math {
template <typename T> std::vector<T> divisor(T n) {
std::vector<T> res;
for (T i = 1; i * i <= n; i++) {
if (n % i == 0) {
res.emplace_back(i);
if (i * i != n) res.emplace_back(n / i);
}
}
return res;
}
template <typename T> std::vector<std::pair<T, int>> prime_factor(T n) {
std::vector<std::pair<T, int>> res;
for (T p = 2; p * p <= n; p++) {
if (n % p == 0) {
res.emplace_back(p, 0);
while (n % p == 0) {
res.back().second++;
n /= p;
}
}
}
if (n > 1) res.emplace_back(n, 1);
return res;
}
std::vector<int> osa_k(int n) {
std::vector<int> min_factor(n + 1, 0);
for (int i = 2; i <= n; i++) {
if (min_factor[i]) continue;
for (int j = i; j <= n; j += i) {
if (!min_factor[j]) {
min_factor[j] = i;
}
}
}
return min_factor;
}
std::vector<int> prime_factor(const std::vector<int>& min_factor, int n) {
std::vector<int> res;
while (n > 1) {
res.emplace_back(min_factor[n]);
n /= min_factor[n];
}
return res;
}
long long modpow(long long x, long long n, long long mod) {
assert(0 <= n && 1 <= mod && mod < (1LL << 31));
if (mod == 1) return 0;
x %= mod;
long long res = 1;
while (n > 0) {
if (n & 1) res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
long long extgcd(long long a, long long b, long long& x, long long& y) {
long long d = a;
if (b != 0) {
d = extgcd(b, a % b, y, x);
y -= (a / b) * x;
} else
x = 1, y = 0;
return d;
}
long long inv_mod(long long a, long long mod) {
assert(1 <= mod);
long long x, y;
if (extgcd(a, mod, x, y) != 1) return -1;
return (mod + x % mod) % mod;
}
template <typename T> T euler_phi(T n) {
auto pf = prime_factor(n);
T res = n;
for (const auto& p : pf) {
res /= p.first;
res *= p.first - 1;
}
return res;
}
std::vector<int> euler_phi_table(int n) {
std::vector<int> res(n + 1, 0);
iota(res.begin(), res.end(), 0);
for (int i = 2; i <= n; i++) {
if (res[i] != i) continue;
for (int j = i; j <= n; j += i) res[j] = res[j] / i * (i - 1);
}
return res;
}
// minimum i > 0 s.t. x^i \equiv 1 \pmod{m}
template <typename T> T order(T x, T m) {
T n = euler_phi(m);
auto cand = divisor(n);
sort(cand.begin(), cand.end());
for (auto& i : cand) {
if (modpow(x, i, m) == 1) {
return i;
}
}
return -1;
}
template <typename T> std::vector<std::tuple<T, T, T>> quotient_ranges(T n) {
std::vector<std::tuple<T, T, T>> res;
T m = 1;
for (; m * m <= n; m++) res.emplace_back(m, m, n / m);
for (; m >= 1; m--) {
T l = n / (m + 1) + 1, r = n / m;
if (l <= r and std::get<1>(res.back()) < l) res.emplace_back(l, r, n / l);
}
return res;
}
} // namespace elementary_math
const int MAX_N = 10000010;
vector<int> table;
ll sum[MAX_N];
void precalc() {
table = elementary_math::euler_phi_table(MAX_N);
for (int i = 1; i < MAX_N; i++) sum[i] = sum[i - 1] + table[i];
}
void solve() {
int N;
cin >> N;
ll tot = 1LL * N * (N - 1) / 2, so = sum[N];
ll ans = so + (tot - so) * 2 + 1;
cout << ans << '\n';
}
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
precalc();
int T;
cin >> T;
for (; T--;) solve();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0