結果
問題 | No.2247 01 ZigZag |
ユーザー | erbowl |
提出日時 | 2023-03-17 22:07:07 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 14,839 bytes |
コンパイル時間 | 2,529 ms |
コンパイル使用メモリ | 214,128 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-18 11:09:40 |
合計ジャッジ時間 | 3,784 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 4 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 6 ms
6,940 KB |
testcase_06 | AC | 4 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 6 ms
6,940 KB |
testcase_09 | AC | 5 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 4 ms
6,940 KB |
testcase_12 | AC | 6 ms
6,944 KB |
testcase_13 | AC | 4 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | AC | 5 ms
6,940 KB |
testcase_16 | AC | 7 ms
6,944 KB |
testcase_17 | AC | 5 ms
6,940 KB |
testcase_18 | AC | 1 ms
6,944 KB |
testcase_19 | AC | 2 ms
6,944 KB |
testcase_20 | AC | 2 ms
6,944 KB |
testcase_21 | AC | 3 ms
6,940 KB |
testcase_22 | AC | 8 ms
6,940 KB |
testcase_23 | AC | 3 ms
6,940 KB |
testcase_24 | AC | 2 ms
6,940 KB |
testcase_25 | AC | 6 ms
6,944 KB |
testcase_26 | AC | 6 ms
6,940 KB |
testcase_27 | AC | 7 ms
6,940 KB |
testcase_28 | AC | 5 ms
6,940 KB |
testcase_29 | AC | 4 ms
6,940 KB |
testcase_30 | AC | 7 ms
6,944 KB |
testcase_31 | AC | 2 ms
6,940 KB |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | AC | 2 ms
6,944 KB |
testcase_38 | WA | - |
testcase_39 | WA | - |
testcase_40 | WA | - |
testcase_41 | WA | - |
testcase_42 | WA | - |
testcase_43 | WA | - |
testcase_44 | WA | - |
testcase_45 | AC | 9 ms
6,940 KB |
testcase_46 | AC | 9 ms
6,944 KB |
testcase_47 | WA | - |
testcase_48 | WA | - |
testcase_49 | WA | - |
testcase_50 | WA | - |
testcase_51 | WA | - |
ソースコード
typedef long long ll; typedef long double ld; #include <bits/stdc++.h> using namespace std; #define int long long struct UnionFind { vector<int> par; UnionFind() { } UnionFind(int n) : par(n, -1) { } void init(int n) { par.assign(n, -1); } int root(int x) { if (par[x] < 0) return x; else return par[x] = root(par[x]); } bool issame(int x, int y) { return root(x) == root(y); } bool merge(int x, int y) { x = root(x); y = root(y); if (x == y) return false; if (x > y) swap(x, y); // merge technique par[x] += par[y]; par[y] = x; return true; } int size(int x) { return -par[root(x)]; } }; // modint (replace MODS[0] on runtime) // vector<int> MODS = { 1000000007 }; vector<int> MODS = { 998244353 }; template<int IND = 0> struct Fp { long long val; constexpr Fp(long long v = 0) noexcept : val(v % MODS[IND]) { if (val < 0) val += MODS[IND]; } constexpr int getmod() const { return MODS[IND]; } constexpr Fp operator - () const noexcept { return val ? MODS[IND] - val : 0; } constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; } constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; } constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; } constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; } constexpr Fp& operator += (const Fp& r) noexcept { val += r.val; if (val >= MODS[IND]) val -= MODS[IND]; return *this; } constexpr Fp& operator -= (const Fp& r) noexcept { val -= r.val; if (val < 0) val += MODS[IND]; return *this; } constexpr Fp& operator *= (const Fp& r) noexcept { val = val * r.val % MODS[IND]; return *this; } constexpr Fp& operator /= (const Fp& r) noexcept { long long a = r.val, b = MODS[IND], u = 1, v = 0; while (b) { long long t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } val = val * u % MODS[IND]; if (val < 0) val += MODS[IND]; return *this; } constexpr bool operator == (const Fp& r) const noexcept { return this->val == r.val; } constexpr bool operator != (const Fp& r) const noexcept { return this->val != r.val; } friend constexpr istream& operator >> (istream& is, Fp<IND>& x) noexcept { is >> x.val; x.val %= MODS[IND]; if (x.val < 0) x.val += MODS[IND]; return is; } friend constexpr ostream& operator << (ostream& os, const Fp<IND>& x) noexcept { return os << x.val; } friend constexpr Fp<IND> modpow(const Fp<IND>& r, long long n) noexcept { if (n == 0) return 1; if (n < 0) return modpow(modinv(r), -n); auto t = modpow(r, n / 2); t = t * t; if (n & 1) t = t * r; return t; } friend constexpr Fp<IND> modinv(const Fp<IND>& r) noexcept { long long a = r.val, b = MODS[IND], u = 1, v = 0; while (b) { long long t = a / b; a -= t * b, swap(a, b); u -= t * v, swap(u, v); } return Fp<IND>(u); } }; // Binomial coefficient template<class T> struct BiCoef { vector<T> fact_, inv_, finv_; constexpr BiCoef() {} constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) { init(n); } constexpr void init(int n) noexcept { fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1); int MOD = fact_[0].getmod(); for(int i = 2; i < n; i++){ fact_[i] = fact_[i-1] * i; inv_[i] = -inv_[MOD%i] * (MOD/i); finv_[i] = finv_[i-1] * inv_[i]; } } constexpr T com(int n, int k) const noexcept { if (n < k || n < 0 || k < 0) return 0; return fact_[n] * finv_[k] * finv_[n-k]; } constexpr T fact(int n) const noexcept { if (n < 0) return 0; return fact_[n]; } constexpr T inv(int n) const noexcept { if (n < 0) return 0; return inv_[n]; } constexpr T finv(int n) const noexcept { if (n < 0) return 0; return finv_[n]; } }; bool is_prime(long long n) { if (n <= 1) return false; for (long long p = 2; p * p <= n; ++p) { if (n % p == 0) return false; } return true; } // Segment Tree template<class Monoid> struct SegTree { using Func = function<Monoid(Monoid, Monoid)>; int N; Func F; Monoid IDENTITY; int SIZE_R; vector<Monoid> dat; /* initialization */ SegTree() {} SegTree(int n, const Func f, const Monoid &identity) : N(n), F(f), IDENTITY(identity) { SIZE_R = 1; while (SIZE_R < n) SIZE_R *= 2; dat.assign(SIZE_R * 2, IDENTITY); } void init(int n, const Func f, const Monoid &identity) { N = n; F = f; IDENTITY = identity; SIZE_R = 1; while (SIZE_R < n) SIZE_R *= 2; dat.assign(SIZE_R * 2, IDENTITY); } /* set, a is 0-indexed */ /* build(): O(N) */ void set(int a, const Monoid &v) { dat[a + SIZE_R] = v; } void build() { for (int k = SIZE_R - 1; k > 0; --k) dat[k] = F(dat[k*2], dat[k*2+1]); } /* update a, a is 0-indexed, O(log N) */ void update(int a, const Monoid &v) { int k = a + SIZE_R; dat[k] = v; while (k >>= 1) dat[k] = F(dat[k*2], dat[k*2+1]); } /* get [a, b), a and b are 0-indexed, O(log N) */ Monoid get(int a, int b) { Monoid vleft = IDENTITY, vright = IDENTITY; for (int left = a + SIZE_R, right = b + SIZE_R; left < right; left >>= 1, right >>= 1) { if (left & 1) vleft = F(vleft, dat[left++]); if (right & 1) vright = F(dat[--right], vright); } return F(vleft, vright); } Monoid all_get() { return dat[1]; } Monoid operator [] (int a) { return dat[a + SIZE_R]; } /* get max r that f(get(l, r)) = True (0-indexed), O(log N) */ /* f(IDENTITY) need to be True */ int max_right(const function<bool(Monoid)> f, int l = 0) { if (l == N) return N; l += SIZE_R; Monoid sum = IDENTITY; do { while (l % 2 == 0) l >>= 1; if (!f(F(sum, dat[l]))) { while (l < SIZE_R) { l = l * 2; if (f(F(sum, dat[l]))) { sum = F(sum, dat[l]); ++l; } } return l - SIZE_R; } sum = F(sum, dat[l]); ++l; } while ((l & -l) != l); // stop if l = 2^e return N; } /* get min l that f(get(l, r)) = True (0-indexed), O(log N) */ /* f(IDENTITY) need to be True */ int min_left(const function<bool(Monoid)> f, int r = -1) { if (r == 0) return 0; if (r == -1) r = N; r += SIZE_R; Monoid sum = IDENTITY; do { --r; while (r > 1 && (r % 2)) r >>= 1; if (!f(F(dat[r], sum))) { while (r < SIZE_R) { r = r * 2 + 1; if (f(F(dat[r], sum))) { sum = F(dat[r], sum); --r; } } return r + 1 - SIZE_R; } sum = F(dat[r], sum); } while ((r & -r) != r); return 0; } /* debug */ void print() { for (int i = 0; i < N; ++i) { cout << (*this)[i]; if (i != N-1) cout << ","; } cout << endl; } }; struct RollingHash { static const int base1 = 1007, base2 = 2009; static const int mod1 = 1000000007, mod2 = 1000000009; vector<long long> hash1, hash2, power1, power2; // construct RollingHash(const string &S) { int n = (int)S.size(); hash1.assign(n+1, 0), hash2.assign(n+1, 0); power1.assign(n+1, 1), power2.assign(n+1, 1); for (int i = 0; i < n; ++i) { hash1[i+1] = (hash1[i] * base1 + S[i]) % mod1; hash2[i+1] = (hash2[i] * base2 + S[i]) % mod2; power1[i+1] = (power1[i] * base1) % mod1; power2[i+1] = (power2[i] * base2) % mod2; } } // get hash value of S[left:right] inline long long get(int l, int r) const { long long res1 = hash1[r] - hash1[l] * power1[r-l] % mod1; if (res1 < 0) res1 += mod1; long long res2 = hash2[r] - hash2[l] * power2[r-l] % mod2; if (res2 < 0) res2 += mod2; return res1 * mod2 + res2; } // get hash value of S inline long long get() const { return hash1.back() * mod2 + hash2.back(); } // get lcp of S[a:] and S[b:] inline int getLCP(int a, int b) const { int len = min((int)hash1.size()-a, (int)hash1.size()-b); int low = 0, high = len; while (high - low > 1) { int mid = (low + high) >> 1; if (get(a, a+mid) != get(b, b+mid)) high = mid; else low = mid; } return low; } // get lcp of S[a:] and T[b:] inline int getLCP(const RollingHash &T, int a, int b) const { int len = min((int)hash1.size()-a, (int)hash1.size()-b); int low = 0, high = len; while (high - low > 1) { int mid = (low + high) >> 1; if (get(a, a+mid) != T.get(b, b+mid)) high = mid; else low = mid; } return low; } }; vector<bool> isprime; vector<int> Era(int n) { isprime.resize(n, true); vector<int> res; isprime[0] = false; isprime[1] = false; for (int i = 2; i < n; ++i) isprime[i] = true; for (int i = 2; i < n; ++i) { if (isprime[i]) { res.push_back(i); for (int j = i*2; j < n; j += i) isprime[j] = false; } } return res; } // 整数値 x にハッシュ値を割り当てる関数 struct custom_hash { static uint64_t splitmix64(uint64_t x) { x += 0x9e3779b97f4a7c15; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9; x = (x ^ (x >> 27)) * 0x94d049bb133111eb; return x ^ (x >> 31); } size_t operator() (uint64_t x) const { static const uint64_t FIXED_RANDOM = chrono::steady_clock::now().time_since_epoch().count(); return splitmix64(x + FIXED_RANDOM); } } rng; struct Eratos { vector<int> primes; vector<bool> isprime; vector<int> mebius; vector<int> min_factor; Eratos(int MAX) : primes(), isprime(MAX+1, true), mebius(MAX+1, 1), min_factor(MAX+1, -1) { isprime[0] = isprime[1] = false; min_factor[0] = 0, min_factor[1] = 1; for (int i = 2; i <= MAX; ++i) { if (!isprime[i]) continue; primes.push_back(i); mebius[i] = -1; min_factor[i] = i; for (int j = i*2; j <= MAX; j += i) { isprime[j] = false; if ((j / i) % i == 0) mebius[j] = 0; else mebius[j] = -mebius[j]; if (min_factor[j] == -1) min_factor[j] = i; } } } // prime factorization vector<pair<int,int>> prime_factors(int n) { vector<pair<int,int> > res; while (n != 1) { int prime = min_factor[n]; int exp = 0; while (min_factor[n] == prime) { ++exp; n /= prime; } res.push_back(make_pair(prime, exp)); } return res; } // enumerate divisors vector<int> divisors(int n) { vector<int> res({1}); auto pf = prime_factors(n); for (auto p : pf) { int n = (int)res.size(); for (int i = 0; i < n; ++i) { int v = 1; for (int j = 0; j < p.second; ++j) { v *= p.first; res.push_back(res[i] * v); } } } return res; } }; long long GCD(long long x, long long y) { if (y == 0) return x; return GCD(y, x % y); } // matrix template<int MOD> struct Matrix { vector<vector<long long> > val; Matrix(int n, int m, long long x = 0) : val(n, vector<long long>(m, x)) {} void init(int n, int m, long long x = 0) {val.assign(n, vector<long long>(m, x));} size_t size() const {return val.size();} inline vector<long long>& operator [] (int i) {return val[i];} }; template<int MOD> ostream& operator << (ostream& s, Matrix<MOD> A) { s << endl; for (int i = 0; i < A.size(); ++i) { for (int j = 0; j < A[i].size(); ++j) { s << A[i][j] << ", "; } s << endl; } return s; } ll MODD = 0; template<int MOD> Matrix<MOD> operator * (Matrix<MOD> A, Matrix<MOD> B) { Matrix<MOD> R(A.size(), B[0].size()); for (int i = 0; i < A.size(); ++i) for (int j = 0; j < B[0].size(); ++j) for (int k = 0; k < B.size(); ++k) R[i][j] = (R[i][j] + A[i][k] * B[k][j] % MODD) % MODD; return R; } template<int MOD> Matrix<MOD> pow(Matrix<MOD> A, long long n) { Matrix<MOD> R(A.size(), A.size()); for (int i = 0; i < A.size(); ++i) R[i][i] = 1; while (n > 0) { if (n & 1) R = R * A; A = A * A; n >>= 1; } return R; } signed main(){ ll n,m,k; std::cin >> n>>m>>k; ll orin = n; ll orim = m; for (int i = 1; i < k; i++) { if(i%2==1){ if(n>=1){ n--; }else{ std::cout << -1 << std::endl; return 0; } }else{ if(m>=2){ m--; }else{ std::cout << -1 << std::endl; return 0; } } } // std::cout << n<<" "<<m << std::endl; if(k%2==0){ for (int i = 0; i < n; i++) { std::cout << 0; } for (int i = 0; i < orin-n-1; i++) { std::cout << "10"; } for (int i = 0; i < orim-(orin-n-1); i++) { std::cout << 1; } // for (int i = 0; i < orin-n; i++) { std::cout << 0; // } }else{ for (int i = 0; i < n; i++) { std::cout << 0; } for (int i = 0; i < orin-n; i++) { std::cout << "10"; } for (int i = 0; i < orim-(orin-n); i++) { std::cout << 1; } // std::cout << 0; } }