結果

問題 No.2248 max(C)-min(C)
ユーザー KowerKoint2010KowerKoint2010
提出日時 2023-03-17 22:07:29
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 803 ms / 3,000 ms
コード長 18,441 bytes
コンパイル時間 2,543 ms
コンパイル使用メモリ 209,268 KB
最終ジャッジ日時 2025-02-11 13:15:18
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 51
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 2 "library/KowerKoint/stl-expansion.hpp"
#include <bits/stdc++.h>
template <typename T1, typename T2>
std::istream& operator>>(std::istream& is, std::pair<T1, T2>& p) {
is >> p.first >> p.second;
return is;
}
template <typename T, size_t N>
std::istream& operator>>(std::istream& is, std::array<T, N>& a) {
for (size_t i = 0; i < N; ++i) {
is >> a[i];
}
return is;
}
template <typename T>
std::istream& operator>>(std::istream& is, std::vector<T>& v) {
for (auto& e : v) is >> e;
return is;
}
template <typename T1, typename T2>
std::ostream& operator<<(std::ostream& os, const std::pair<T1, T2>& p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, size_t N>
std::ostream& operator<<(std::ostream& os, const std::array<T, N>& a) {
for (size_t i = 0; i < N; ++i) {
os << a[i] << (i + 1 == a.size() ? "" : " ");
}
return os;
}
template <typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
for (size_t i = 0; i < v.size(); ++i) {
os << v[i] << (i + 1 == v.size() ? "" : " ");
}
return os;
}
#line 3 "library/KowerKoint/base.hpp"
using namespace std;
#define REP(i, n) for(int i = 0; i < (int)(n); i++)
#define FOR(i, a, b) for(ll i = a; i < (ll)(b); i++)
#define ALL(a) (a).begin(),(a).end()
#define RALL(a) (a).rbegin(),(a).rend()
#define END(...) { print(__VA_ARGS__); return; }
using VI = vector<int>;
using VVI = vector<VI>;
using VVVI = vector<VVI>;
using ll = long long;
using VL = vector<ll>;
using VVL = vector<VL>;
using VVVL = vector<VVL>;
using ull = unsigned long long;
using VUL = vector<ull>;
using VVUL = vector<VUL>;
using VVVUL = vector<VVUL>;
using VD = vector<double>;
using VVD = vector<VD>;
using VVVD = vector<VVD>;
using VS = vector<string>;
using VVS = vector<VS>;
using VVVS = vector<VVS>;
using VC = vector<char>;
using VVC = vector<VC>;
using VVVC = vector<VVC>;
using P = pair<int, int>;
using VP = vector<P>;
using VVP = vector<VP>;
using VVVP = vector<VVP>;
using LP = pair<ll, ll>;
using VLP = vector<LP>;
using VVLP = vector<VLP>;
using VVVLP = vector<VVLP>;
template <typename T>
using PQ = priority_queue<T>;
template <typename T>
using GPQ = priority_queue<T, vector<T>, greater<T>>;
constexpr int INF = 1001001001;
constexpr ll LINF = 1001001001001001001ll;
constexpr int DX[] = {1, 0, -1, 0};
constexpr int DY[] = {0, 1, 0, -1};
void print() { cout << '\n'; }
template<typename T>
void print(const T &t) { cout << t << '\n'; }
template<typename Head, typename... Tail>
void print(const Head &head, const Tail &... tail) {
cout << head << ' ';
print(tail...);
}
#ifdef DEBUG
void dbg() { cerr << '\n'; }
template<typename T>
void dbg(const T &t) { cerr << t << '\n'; }
template<typename Head, typename... Tail>
void dbg(const Head &head, const Tail &... tail) {
cerr << head << ' ';
dbg(tail...);
}
#else
template<typename... Args>
void dbg(const Args &... args) {}
#endif
template<typename T>
vector<vector<T>> split(typename vector<T>::const_iterator begin, typename vector<T>::const_iterator end, T val) {
vector<vector<T>> res;
vector<T> cur;
for(auto it = begin; it != end; it++) {
if(*it == val) {
res.push_back(cur);
cur.clear();
} else cur.push_back(*it);
}
res.push_back(cur);
return res;
}
vector<string> split(typename string::const_iterator begin, typename string::const_iterator end, char val) {
vector<string> res;
string cur = "";
for(auto it = begin; it != end; it++) {
if(*it == val) {
res.push_back(cur);
cur.clear();
} else cur.push_back(*it);
}
res.push_back(cur);
return res;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template <typename T>
pair<VI, vector<T>> compress(const vector<T> &a) {
int n = a.size();
vector<T> x;
REP(i, n) x.push_back(a[i]);
sort(ALL(x)); x.erase(unique(ALL(x)), x.end());
VI res(n);
REP(i, n) res[i] = lower_bound(ALL(x), a[i]) - x.begin();
return make_pair(res, x);
}
template <typename It>
auto rle(It begin, It end) {
vector<pair<typename It::value_type, int>> res;
if(begin == end) return res;
auto pre = *begin;
int num = 1;
for(auto it = begin + 1; it != end; it++) {
if(pre != *it) {
res.emplace_back(pre, num);
pre = *it;
num = 1;
} else num++;
}
res.emplace_back(pre, num);
return res;
}
template <typename It>
vector<pair<typename It::value_type, int>> rle_sort(It begin, It end) {
vector<typename It::value_type> cloned(begin, end);
sort(ALL(cloned));
auto e = rle(ALL(cloned));
sort(ALL(e), [](const auto& l, const auto& r) { return l.second < r.second; });
return e;
}
template <typename T>
pair<vector<T>, vector<T>> factorial(int n) {
vector<T> res(n+1), rev(n+1);
res[0] = 1;
REP(i, n) res[i+1] = res[i] * (i+1);
rev[n] = 1 / res[n];
for(int i = n; i > 0; i--) {
rev[i-1] = rev[i] * i;
}
return make_pair(res, rev);
}
#line 3 "library/KowerKoint/integer/extgcd.hpp"
constexpr ll extgcd(ll a, ll b, ll& x, ll& y) {
x = 1, y = 0;
ll nx = 0, ny = 1;
while(b) {
ll q = a / b;
ll r = a % b;
a = b, b = r;
ll nnx = x - q * nx;
ll nny = y - q * ny;
x = nx, nx = nnx;
y = ny, ny = nny;
}
return a;
}
#line 3 "library/KowerKoint/integer/pow-mod.hpp"
constexpr ll inv_mod(ll n, ll m) {
n %= m;
if (n < 0) n += m;
ll x = -1, y = -1;
if(extgcd(n, m, x, y) != 1) throw logic_error("");
x %= m;
if(x < 0) x += m;
return x;
}
constexpr ll pow_mod(ll a, ll n, ll m) {
if(n == 0) return 1LL;
if(n < 0) return inv_mod(pow_mod(a, -n, m), m);
a %= m;
if (a < 0) n += m;
ll res = 1;
while(n) {
if(n & 1) {
res *= a;
res %= m;
}
n >>= 1;
a *= a;
a %= m;
}
return res;
}
#line 3 "library/KowerKoint/algebra/field.hpp"
template <typename T>
struct SumGroupBase {
constexpr static bool defzero = false;
using Coef = nullptr_t;
using Scalar = nullptr_t;
};
template <typename T>
struct ProdGroupBase {
constexpr static bool defone = false;
};
template <typename T>
struct RepresentationBase {
using R = T;
constexpr static T construct(const R& x) { return x; }
constexpr static R represent(const T& x) { return x; }
};
template <typename T>
struct CompareBase {
constexpr static bool eq(const T& x, const T& y) { return x == y; }
constexpr static bool lt(const T& x, const T& y) { return x < y; }
};
template <typename T>
struct FinitePropertyBase {
constexpr static bool is_finite = false;
};
template <typename T, typename SumGroup = SumGroupBase<T>, typename ProdGroup = ProdGroupBase<T>, typename Representation = RepresentationBase<T>,
    typename Compare = CompareBase<T>, typename FiniteProperty = FinitePropertyBase<T>>
struct Field {
using R = typename Representation::R;
using Coef = typename SumGroup::Coef;
using Scalar = typename SumGroup::Scalar;
T val;
constexpr static Field zero() {
return SumGroup::zero;
}
constexpr static Field one() {
return ProdGroup::one;
}
constexpr static bool defzero = SumGroup::defzero;
constexpr static bool defone = ProdGroup::defone;
constexpr static bool is_finite = FiniteProperty::is_finite;
constexpr Field() {
if constexpr(SumGroup::defzero) val = SumGroup::zero;
else if constexpr(SumGroup::defone) val = ProdGroup::one;
else val = T();
}
constexpr Field(const R& r) : val(Representation::construct(r)) {}
constexpr R represent() const { return Representation::represent(val); }
constexpr decltype(auto) operator[](size_t i) const {
return val[i];
}
constexpr static Field premitive_root() {
return FiniteProperty::premitive_root();
}
constexpr static size_t order() {
return FiniteProperty::order();
}
constexpr Field& operator*=(const Field& other) {
ProdGroup::mulassign(val, other.val);
return *this;
}
constexpr Field operator*(const Field& other) const {
return Field(*this) *= other;
}
constexpr Field inv() const {
return ProdGroup::inv(val);
}
constexpr Field& operator/=(const Field& other) {
return *this *= other.inv();
}
constexpr Field operator/(const Field& other) const {
return Field(*this) /= other;
}
constexpr Field pow(ll n) const {
if(n < 0) {
return inv().pow(-n);
}
Field res = one();
Field a = *this;
while(n > 0) {
if(n & 1) res *= a;
a *= a;
n >>= 1;
}
return res;
}
constexpr Field operator+() const {
return *this;
}
constexpr Field& operator+=(const Field& other) {
SumGroup::addassign(val, other.val);
return *this;
}
constexpr Field operator+(const Field& other) const {
return Field(*this) += other;
}
constexpr Field operator-() const {
return SumGroup::minus(val);
}
constexpr Field& operator-=(const Field& other) {
return *this += -other;
}
constexpr Field operator-(const Field& other) const {
return Field(*this) -= other;
}
constexpr Field& operator++() {
return *this += one();
}
Field operator++(int) {
Field ret = *this;
++*this;
return ret;
}
constexpr Field& operator--() {
return *this -= one();
}
Field operator--(int) {
Field ret = *this;
--*this;
return ret;
}
constexpr Field& operator*=(const Coef& other) {
SumGroup::coefassign(val, other);
return *this;
}
constexpr Field operator*(const Coef& other) const {
return Field(*this) *= other;
}
constexpr Scalar dot(const Field& other) const {
return SumGroup::dot(val, other.val);
}
constexpr Scalar norm() const {
return dot(*this);
}
constexpr bool operator==(const Field& other) const {
return Compare::eq(val, other.val);
}
constexpr bool operator!=(const Field& other) const {
return !(*this == other);
}
constexpr bool operator<(const Field& other) const {
return Compare::lt(represent(), other.represent());
}
constexpr bool operator>(const Field& other) const {
return other < *this;
}
constexpr bool operator<=(const Field& other) const {
return !(*this > other);
}
constexpr bool operator>=(const Field& other) const {
return !(*this < other);
}
friend istream& operator>>(istream& is, Field& f) {
R r; is >> r;
f = r;
return is;
}
friend ostream& operator<<(ostream& os, const Field& f) {
return os << f.represent();
}
};
namespace std {
template <typename T>
struct hash<Field<T>> {
size_t operator()(const Field<T>& f) const {
return hash<typename Field<T>::R>()(f.represent());
}
};
}
template <typename>
struct is_field : false_type {};
template <typename T, typename SumGroup, typename ProdGroup, typename Representation, typename FiniteProperty>
struct is_field<Field<T, SumGroup, ProdGroup, Representation, FiniteProperty>> : true_type {};
template <typename T>
constexpr bool is_field_v = is_field<T>::value;
template <typename T>
constexpr T zero() {
if constexpr(is_field_v<T>) return T::zero();
else return 0;
}
template <typename T>
constexpr T one() {
if constexpr(is_field_v<T>) return T::one();
else return 1;
}
template <typename T>
constexpr bool is_finite() {
if constexpr(is_field_v<T>) return T::is_finite;
else return false;
}
#line 4 "library/KowerKoint/algebra/modint.hpp"
template <ll mod>
struct SumGroupModint : SumGroupBase<ll> {
static ll& addassign(ll& l, const ll& r) {
ll ret;
if(__builtin_add_overflow(l, r, &ret)) {
l = l % mod + r % mod;
} else {
l = ret;
}
return l;
}
constexpr static bool defzero = true;
constexpr static ll zero = 0;
constexpr static ll minus(const ll& x) {
return -x;
}
};
template <ll mod>
struct ProdGroupModint : ProdGroupBase<ll> {
constexpr static bool defmul = true;
static ll& mulassign(ll& l, const ll& r) {
ll ret;
if(__builtin_mul_overflow(l, r, &ret)) {
l = (l % mod) * (r % mod);
} else {
l = ret;
}
return l;
}
constexpr static bool defone = true;
constexpr static ll one = 1;
constexpr static bool definv = true;
constexpr static ll inv(const ll& x) {
return inv_mod(x, mod);
}
};
template <ll mod>
struct RepresentationModint : RepresentationBase<ll> {
using R = ll;
constexpr static ll construct(const R& x) { return x % mod; }
constexpr static R represent(const ll& x) {
ll ret = x % mod;
if(ret < 0) ret += mod;
return ret;
}
};
template <ll mod>
struct CompareModint : CompareBase<ll> {
constexpr static bool lt(const ll& l, const ll& r) {
return RepresentationModint<mod>::represent(l) < RepresentationModint<mod>::represent(r);
}
constexpr static bool eq(const ll& l, const ll& r) {
return RepresentationModint<mod>::represent(l) == RepresentationModint<mod>::represent(r);
}
};
template <ll mod>
struct FinitePropertyModint : FinitePropertyBase<ll> {
constexpr static bool is_finite = true;
constexpr static ll premitive_root() {
static_assert(mod == 998244353);
return 3;
}
constexpr static size_t order() {
return mod - 1;
}
};
template <ll mod>
using Modint = Field<ll, SumGroupModint<mod>, ProdGroupModint<mod>, RepresentationModint<mod>, CompareModint<mod>, FinitePropertyModint<mod>>;
using MI3 = Modint<998244353>;
using V3 = vector<MI3>;
using VV3 = vector<V3>;
using VVV3 = vector<VV3>;
using MI7 = Modint<1000000007>;
using V7 = vector<MI7>;
using VV7 = vector<V7>;
using VVV7 = vector<VV7>;
#line 3 "library/KowerKoint/counting/counting.hpp"
template <typename T>
struct Counting {
vector<T> fact, ifact;
Counting() {}
Counting(ll n) {
assert(n >= 0);
expand(n);
}
void expand(ll n) {
assert(n >= 0);
ll sz = (ll)fact.size();
if(sz > n) return;
fact.resize(n+1);
ifact.resize(n+1);
fact[0] = 1;
FOR(i, max(1LL, sz), n+1) fact[i] = fact[i-1] * i;
ifact[n] = fact[n].inv();
for(ll i = n-1; i >= sz; i--) ifact[i] = ifact[i+1] * (i+1);
}
T p(ll n, ll r) {
if(n < r) return 0;
assert(r >= 0);
expand(n);
return fact[n] * ifact[n-r];
}
T c(ll n, ll r) {
if(n < r) return 0;
assert(r >= 0);
expand(n);
return fact[n] * ifact[r] * ifact[n-r];
}
T h(ll n, ll r) {
assert(n >= 0);
assert(r >= 0);
return c(n+r-1, r);
}
T stirling(ll n, ll k) {
if(n < k) return 0;
assert(k >= 0);
if(n == 0) return 1;
T res = 0;
T sign = k%2? -1 : 1;
expand(k);
REP(i, k+1) {
res += sign * ifact[i] * ifact[k-i] * T(i).pow(n);
sign *= -1;
}
return res;
}
vector<vector<T>> stirling_table(ll n, ll k) {
assert(n >= 0 && k >= 0);
vector<vector<T>> res(n+1, vector<T>(k+1));
res[0][0] = 1;
FOR(i, 1, n+1) FOR(j, 1, k+1) {
res[i][j] = res[i-1][j-1] + j * res[i-1][j];
}
return res;
}
T bell(ll n, ll k) {
assert(n >= 0 && k >= 0);
expand(k);
vector<T> tmp(k+1);
T sign = 1;
tmp[0] = 1;
FOR(i, 1, k+1) {
sign *= -1;
tmp[i] = tmp[i-1] + sign * ifact[i];
}
T res = 0;
REP(i, k+1) {
res += T(i).pow(n) * ifact[i] * tmp[k-i];
}
return res;
}
vector<vector<T>> partition_table(ll n, ll k) {
assert(n >= 0 && k >= 0);
vector<vector<T>> res(n+1, vector<T>(k+1));
REP(i, k+1) res[0][i] = 1;
FOR(i, 1, n+1) FOR(j, 1, k+1) {
res[i][j] = res[i][j-1] + (i<j? 0 : res[i-j][j]);
}
return res;
}
};
#line 2 "Contests/yukicoder_381/yukicoder_381_c/main.cpp"
/* #include <atcoder/all> */
/* using namespace atcoder; */
/* #include "KowerKoint/expansion/ac-library/all.hpp" */
void solve(){
int n; cin >> n;
VL a(n), b(n); cin >> a >> b;
REP(i, n) if(a[i] > b[i]) swap(a[i], b[i]);
ll ok = INF, ng = -1;
while(ok - ng > 1) {
int mid = (ok+ng) / 2;
VLP kukan(1, LP(-LINF, LINF));
REP(i, n) {
VLP kukan2;
auto push_kukan2 = [&](int l, int r) {
if(!kukan2.empty() && kukan2.back().second >= l) kukan2.back().second = r;
else kukan2.emplace_back(l, r);
};
push_kukan2(a[i] - mid, a[i] + 1);
push_kukan2((a[i]+b[i])/2 - mid, (a[i]+b[i])/2 + 1);
push_kukan2(b[i] - mid, b[i] + 1);
VLP new_kukan;
for(auto& p : kukan) {
for(auto& p2 : kukan2) {
if(p.second <= p2.first || p2.second <= p.first) continue;
new_kukan.emplace_back(max(p.first, p2.first), min(p.second, p2.second));
}
}
kukan = new_kukan;
}
if(!kukan.empty()) ok = mid;
else ng = mid;
}
print(ok);
}
// generated by oj-template v4.7.2 (https://github.com/online-judge-tools/template-generator)
int main() {
// Fasterize input/output script
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout << fixed << setprecision(100);
// scanf/printf user should delete this fasterize input/output script
int t = 1;
//cin >> t; // comment out if solving multi testcase
for(int testCase = 1;testCase <= t;++testCase){
solve();
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0