結果

問題 No.2249 GCDistance
ユーザー KowerKoint2010KowerKoint2010
提出日時 2023-03-17 22:18:49
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 4,276 ms / 5,000 ms
コード長 26,299 bytes
コンパイル時間 2,438 ms
コンパイル使用メモリ 219,996 KB
実行使用メモリ 128,212 KB
最終ジャッジ日時 2023-10-18 15:14:59
合計ジャッジ時間 55,180 ms
ジャッジサーバーID
(参考情報)
judge15 / judge11
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 4,211 ms
128,212 KB
testcase_01 AC 4,267 ms
128,212 KB
testcase_02 AC 4,271 ms
128,212 KB
testcase_03 AC 4,259 ms
128,212 KB
testcase_04 AC 4,225 ms
128,212 KB
testcase_05 AC 4,275 ms
128,212 KB
testcase_06 AC 4,276 ms
128,212 KB
testcase_07 AC 4,260 ms
128,212 KB
testcase_08 AC 4,203 ms
128,212 KB
testcase_09 AC 4,254 ms
128,212 KB
testcase_10 AC 4,242 ms
128,212 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 "library/KowerKoint/stl-expansion.hpp"
#include <bits/stdc++.h>

template <typename T1, typename T2>
std::istream& operator>>(std::istream& is, std::pair<T1, T2>& p) {
    is >> p.first >> p.second;
    return is;
}
template <typename T, size_t N>
std::istream& operator>>(std::istream& is, std::array<T, N>& a) {
    for (size_t i = 0; i < N; ++i) {
        is >> a[i];
    }
    return is;
}
template <typename T>
std::istream& operator>>(std::istream& is, std::vector<T>& v) {
    for (auto& e : v) is >> e;
    return is;
}
template <typename T1, typename T2>
std::ostream& operator<<(std::ostream& os, const std::pair<T1, T2>& p) {
    os << p.first << " " << p.second;
    return os;
}
template <typename T, size_t N>
std::ostream& operator<<(std::ostream& os, const std::array<T, N>& a) {
    for (size_t i = 0; i < N; ++i) {
        os << a[i] << (i + 1 == a.size() ? "" : " ");
    }
    return os;
}
template <typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {
    for (size_t i = 0; i < v.size(); ++i) {
        os << v[i] << (i + 1 == v.size() ? "" : " ");
    }
    return os;
}
#line 3 "library/KowerKoint/base.hpp"
using namespace std;

#define REP(i, n) for(int i = 0; i < (int)(n); i++)
#define FOR(i, a, b) for(ll i = a; i < (ll)(b); i++)
#define ALL(a) (a).begin(),(a).end()
#define RALL(a) (a).rbegin(),(a).rend()
#define END(...) { print(__VA_ARGS__); return; }

using VI = vector<int>;
using VVI = vector<VI>;
using VVVI = vector<VVI>;
using ll = long long;
using VL = vector<ll>;
using VVL = vector<VL>;
using VVVL = vector<VVL>;
using ull = unsigned long long;
using VUL = vector<ull>;
using VVUL = vector<VUL>;
using VVVUL = vector<VVUL>;
using VD = vector<double>;
using VVD = vector<VD>;
using VVVD = vector<VVD>;
using VS = vector<string>;
using VVS = vector<VS>;
using VVVS = vector<VVS>;
using VC = vector<char>;
using VVC = vector<VC>;
using VVVC = vector<VVC>;
using P = pair<int, int>;
using VP = vector<P>;
using VVP = vector<VP>;
using VVVP = vector<VVP>;
using LP = pair<ll, ll>;
using VLP = vector<LP>;
using VVLP = vector<VLP>;
using VVVLP = vector<VVLP>;

template <typename T>
using PQ = priority_queue<T>;
template <typename T>
using GPQ = priority_queue<T, vector<T>, greater<T>>;

constexpr int INF = 1001001001;
constexpr ll LINF = 1001001001001001001ll;
constexpr int DX[] = {1, 0, -1, 0};
constexpr int DY[] = {0, 1, 0, -1};

void print() { cout << '\n'; }
template<typename T>
void print(const T &t) { cout << t << '\n'; }
template<typename Head, typename... Tail>
void print(const Head &head, const Tail &... tail) {
    cout << head << ' ';
    print(tail...);
}

#ifdef DEBUG
void dbg() { cerr << '\n'; }
template<typename T>
void dbg(const T &t) { cerr << t << '\n'; }
template<typename Head, typename... Tail>
void dbg(const Head &head, const Tail &... tail) {
    cerr << head << ' ';
    dbg(tail...);
}
#else
template<typename... Args>
void dbg(const Args &... args) {}
#endif

template<typename T>
vector<vector<T>> split(typename vector<T>::const_iterator begin, typename vector<T>::const_iterator end, T val) {
    vector<vector<T>> res;
    vector<T> cur;
    for(auto it = begin; it != end; it++) {
        if(*it == val) {
            res.push_back(cur);
            cur.clear();
        } else cur.push_back(*it);
    }
    res.push_back(cur);
    return res;
}

vector<string> split(typename string::const_iterator begin, typename string::const_iterator end, char val) {
    vector<string> res;
    string cur = "";
    for(auto it = begin; it != end; it++) {
        if(*it == val) {
            res.push_back(cur);
            cur.clear();
        } else cur.push_back(*it);
    }
    res.push_back(cur);
    return res;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template <typename T>
pair<VI, vector<T>> compress(const vector<T> &a) {
    int n = a.size();
    vector<T> x;
    REP(i, n) x.push_back(a[i]);
    sort(ALL(x)); x.erase(unique(ALL(x)), x.end());
    VI res(n);
    REP(i, n) res[i] = lower_bound(ALL(x), a[i]) - x.begin();
    return make_pair(res, x);
}

template <typename It>
auto rle(It begin, It end) {
    vector<pair<typename It::value_type, int>> res;
    if(begin == end) return res;
    auto pre = *begin;
    int num = 1;
    for(auto it = begin + 1; it != end; it++) {
        if(pre != *it) {
            res.emplace_back(pre, num);
            pre = *it;
            num = 1;
        } else num++;
    }
    res.emplace_back(pre, num);
    return res;
}

template <typename It>
vector<pair<typename It::value_type, int>> rle_sort(It begin, It end) {
    vector<typename It::value_type> cloned(begin, end);
    sort(ALL(cloned));
    auto e = rle(ALL(cloned));
    sort(ALL(e), [](const auto& l, const auto& r) { return l.second < r.second; });
    return e;
}

template <typename T>
pair<vector<T>, vector<T>> factorial(int n) {
    vector<T> res(n+1), rev(n+1);
    res[0] = 1;
    REP(i, n) res[i+1] = res[i] * (i+1);
    rev[n] = 1 / res[n];
    for(int i = n; i > 0; i--) {
        rev[i-1] = rev[i] * i;
    }
    return make_pair(res, rev);
}
#line 3 "library/KowerKoint/integer/extgcd.hpp"

constexpr ll extgcd(ll a, ll b, ll& x, ll& y) {
    x = 1, y = 0;
    ll nx = 0, ny = 1;
    while(b) {
        ll q = a / b;
        ll r = a % b;
        a = b, b = r;
        ll nnx = x - q * nx;
        ll nny = y - q * ny;
        x = nx, nx = nnx;
        y = ny, ny = nny;
    }
    return a;
}
#line 3 "library/KowerKoint/integer/pow-mod.hpp"

constexpr ll inv_mod(ll n, ll m) {
    n %= m;
    if (n < 0) n += m;
    ll x = -1, y = -1;
    if(extgcd(n, m, x, y) != 1) throw logic_error("");
    x %= m;
    if(x < 0) x += m;
    return x;
}

constexpr ll pow_mod(ll a, ll n, ll m) {
    if(n == 0) return 1LL;
    if(n < 0) return inv_mod(pow_mod(a, -n, m), m);
    a %= m;
    if (a < 0) n += m;
    ll res = 1;
    while(n) {
        if(n & 1) {
            res *= a;
            res %= m;
        }
        n >>= 1;
        a *= a;
        a %= m;
    }
    return res;
}
#line 3 "library/KowerKoint/algebra/field.hpp"

template <typename T>
struct SumGroupBase {
    constexpr static bool defzero = false;
    using Coef = nullptr_t;
    using Scalar = nullptr_t;
};
template <typename T>
struct ProdGroupBase {
    constexpr static bool defone = false;
};
template <typename T>
struct RepresentationBase {
    using R = T;
    constexpr static T construct(const R& x) { return x; }
    constexpr static R represent(const T& x) { return x; }
};
template <typename T>
struct CompareBase {
    constexpr static bool eq(const T& x, const T& y) { return x == y; }
    constexpr static bool lt(const T& x, const T& y) { return x < y; }
};
template <typename T>
struct FinitePropertyBase {
    constexpr static bool is_finite = false;
};

template <typename T, typename SumGroup = SumGroupBase<T>, typename ProdGroup = ProdGroupBase<T>, typename Representation = RepresentationBase<T>, typename Compare = CompareBase<T>, typename FiniteProperty = FinitePropertyBase<T>>
struct Field {
    using R = typename Representation::R;
    using Coef = typename SumGroup::Coef;
    using Scalar = typename SumGroup::Scalar;
    T val;
    constexpr static Field zero() {
        return SumGroup::zero;
    }
    constexpr static Field one() {
        return ProdGroup::one;
    }
    constexpr static bool defzero = SumGroup::defzero;
    constexpr static bool defone = ProdGroup::defone;
    constexpr static bool is_finite = FiniteProperty::is_finite;
    constexpr Field() {
        if constexpr(SumGroup::defzero) val = SumGroup::zero;
        else if constexpr(SumGroup::defone) val = ProdGroup::one;
        else val = T();
    }
    constexpr Field(const R& r) : val(Representation::construct(r)) {}
    constexpr R represent() const { return Representation::represent(val); }
    constexpr decltype(auto) operator[](size_t i) const {
        return val[i];
    }
    constexpr static Field premitive_root() {
        return FiniteProperty::premitive_root();
    }
    constexpr static size_t order() {
        return FiniteProperty::order();
    }
    constexpr Field& operator*=(const Field& other) {
        ProdGroup::mulassign(val, other.val);
        return *this;
    }
    constexpr Field operator*(const Field& other) const {
        return Field(*this) *= other;
    }
    constexpr Field inv() const {
        return ProdGroup::inv(val);
    }
    constexpr Field& operator/=(const Field& other) {
        return *this *= other.inv();
    }
    constexpr Field operator/(const Field& other) const {
        return Field(*this) /= other;
    }
    constexpr Field pow(ll n) const {
        if(n < 0) {
            return inv().pow(-n);
        }
        Field res = one();
        Field a = *this;
        while(n > 0) {
            if(n & 1) res *= a;
            a *= a;
            n >>= 1;
        }
        return res;
    }
    constexpr Field operator+() const {
        return *this;
    }
    constexpr Field& operator+=(const Field& other) {
        SumGroup::addassign(val, other.val);
        return *this;
    }
    constexpr Field operator+(const Field& other) const {
        return Field(*this) += other;
    }
    constexpr Field operator-() const {
        return SumGroup::minus(val);
    }
    constexpr Field& operator-=(const Field& other) {
        return *this += -other;
    }
    constexpr Field operator-(const Field& other) const {
        return Field(*this) -= other;
    }
    constexpr Field& operator++() {
        return *this += one();
    }
    Field operator++(int) {
        Field ret = *this;
        ++*this;
        return ret;
    }
    constexpr Field& operator--() {
        return *this -= one();
    }
    Field operator--(int) {
        Field ret = *this;
        --*this;
        return ret;
    }
    constexpr Field& operator*=(const Coef& other) {
        SumGroup::coefassign(val, other);
        return *this;
    }
    constexpr Field operator*(const Coef& other) const {
        return Field(*this) *= other;
    }
    constexpr Scalar dot(const Field& other) const {
        return SumGroup::dot(val, other.val);
    }
    constexpr Scalar norm() const {
        return dot(*this);
    }
    constexpr bool operator==(const Field& other) const {
        return Compare::eq(val, other.val);
    }
    constexpr bool operator!=(const Field& other) const {
        return !(*this == other);
    }
    constexpr bool operator<(const Field& other) const {
        return Compare::lt(represent(), other.represent());
    }
    constexpr bool operator>(const Field& other) const {
        return other < *this;
    }
    constexpr bool operator<=(const Field& other) const {
        return !(*this > other);
    }
    constexpr bool operator>=(const Field& other) const {
        return !(*this < other);
    }
    friend istream& operator>>(istream& is, Field& f) {
        R r; is >> r;
        f = r;
        return is;
    }
    friend ostream& operator<<(ostream& os, const Field& f) {
        return os << f.represent();
    }
};
namespace std {
    template <typename T>
    struct hash<Field<T>> {
        size_t operator()(const Field<T>& f) const {
            return hash<typename Field<T>::R>()(f.represent());
        }
    };
}
template <typename>
struct is_field : false_type {};
template <typename T, typename SumGroup, typename ProdGroup, typename Representation, typename FiniteProperty>
struct is_field<Field<T, SumGroup, ProdGroup, Representation, FiniteProperty>> : true_type {};
template <typename T>
constexpr bool is_field_v = is_field<T>::value;
template <typename T>
constexpr T zero() {
    if constexpr(is_field_v<T>) return T::zero();
    else return 0;
}
template <typename T>
constexpr T one() {
    if constexpr(is_field_v<T>) return T::one();
    else return 1;
}
template <typename T>
constexpr bool is_finite() {
    if constexpr(is_field_v<T>) return T::is_finite;
    else return false;
}
#line 4 "library/KowerKoint/algebra/modint.hpp"

template <ll mod>
struct SumGroupModint : SumGroupBase<ll> {
    static ll& addassign(ll& l, const ll& r) {
        ll ret;
        if(__builtin_add_overflow(l, r, &ret)) {
            l = l % mod + r % mod;
        } else {
            l = ret;
        }
        return l;
    }
    constexpr static bool defzero = true;
    constexpr static ll zero = 0;
    constexpr static ll minus(const ll& x) {
        return -x;
    }
};
template <ll mod>
struct ProdGroupModint : ProdGroupBase<ll> {
    constexpr static bool defmul = true;
    static ll& mulassign(ll& l, const ll& r) {
        ll ret;
        if(__builtin_mul_overflow(l, r, &ret)) {
            l = (l % mod) * (r % mod);
        } else {
            l = ret;
        }
        return l;
    }
    constexpr static bool defone = true;
    constexpr static ll one = 1;
    constexpr static bool definv = true;
    constexpr static ll inv(const ll& x) {
        return inv_mod(x, mod);
    }
};
template <ll mod>
struct RepresentationModint : RepresentationBase<ll> {
    using R = ll;
    constexpr static ll construct(const R& x) { return x % mod; }
    constexpr static R represent(const ll& x) {
        ll ret = x % mod;
        if(ret < 0) ret += mod;
        return ret;
    }
};
template <ll mod>
struct CompareModint : CompareBase<ll> {
    constexpr static bool lt(const ll& l, const ll& r) {
        return RepresentationModint<mod>::represent(l) < RepresentationModint<mod>::represent(r);
    }
    constexpr static bool eq(const ll& l, const ll& r) {
        return RepresentationModint<mod>::represent(l) == RepresentationModint<mod>::represent(r);
    }
};
template <ll mod>
struct FinitePropertyModint : FinitePropertyBase<ll> {
    constexpr static bool is_finite = true;
    constexpr static ll premitive_root() {
        static_assert(mod == 998244353);
        return 3;
    }
    constexpr static size_t order() {
        return mod - 1;
    }
};

template <ll mod>
using Modint = Field<ll, SumGroupModint<mod>, ProdGroupModint<mod>, RepresentationModint<mod>, CompareModint<mod>, FinitePropertyModint<mod>>;

using MI3 = Modint<998244353>;
using V3 = vector<MI3>;
using VV3 = vector<V3>;
using VVV3 = vector<VV3>;
using MI7 = Modint<1000000007>;
using V7 = vector<MI7>;
using VV7 = vector<V7>;
using VVV7 = vector<VV7>;
#line 3 "library/KowerKoint/counting/counting.hpp"

template <typename T>
struct Counting {
    vector<T> fact, ifact;

    Counting() {}
    Counting(ll n) {
        assert(n >= 0);
        expand(n);
    }

    void expand(ll n) {
        assert(n >= 0);
        ll sz = (ll)fact.size();
        if(sz > n) return;
        fact.resize(n+1);
        ifact.resize(n+1);
        fact[0] = 1;
        FOR(i, max(1LL, sz), n+1) fact[i] = fact[i-1] * i;
        ifact[n] = fact[n].inv();
        for(ll i = n-1; i >= sz; i--) ifact[i] = ifact[i+1] * (i+1);
    }

    T p(ll n, ll r) {
        if(n < r) return 0;
        assert(r >= 0);
        expand(n);
        return fact[n] * ifact[n-r];
    }

    T c(ll n, ll r) {
        if(n < r) return 0;
        assert(r >= 0);
        expand(n);
        return fact[n] * ifact[r] * ifact[n-r];
    }

    T h(ll n, ll r) {
        assert(n >= 0);
        assert(r >= 0);
        return c(n+r-1, r);
    }

    T stirling(ll n, ll k) {
        if(n < k) return 0;
        assert(k >= 0);
        if(n == 0) return 1;
        T res = 0;
        T sign = k%2? -1 : 1;
        expand(k);
        REP(i, k+1) {
            res += sign * ifact[i] * ifact[k-i] * T(i).pow(n);
            sign *= -1;
        }
        return res;
    }

    vector<vector<T>> stirling_table(ll n, ll k) {
        assert(n >= 0 && k >= 0);
        vector<vector<T>> res(n+1, vector<T>(k+1));
        res[0][0] = 1;
        FOR(i, 1, n+1) FOR(j, 1, k+1) {
            res[i][j] = res[i-1][j-1] + j * res[i-1][j];
        }
        return res;
    }

    T bell(ll n, ll k) {
        assert(n >= 0 && k >= 0);
        expand(k);
        vector<T> tmp(k+1);
        T sign = 1;
        tmp[0] = 1;
        FOR(i, 1, k+1) {
            sign *= -1;
            tmp[i] = tmp[i-1] + sign * ifact[i];
        }
        T res = 0;
        REP(i, k+1) {
            res += T(i).pow(n) * ifact[i] * tmp[k-i];
        }
        return res;
    }

    vector<vector<T>> partition_table(ll n, ll k) {
        assert(n >= 0 && k >= 0);
        vector<vector<T>> res(n+1, vector<T>(k+1));
        REP(i, k+1) res[0][i] = 1;
        FOR(i, 1, n+1) FOR(j, 1, k+1) {
            res[i][j] = res[i][j-1] + (i<j? 0 : res[i-j][j]);
        }
        return res;
    }
};
#line 3 "library/KowerKoint/integer/kth-root-integer.hpp"

ull kth_root_integer(ull x, ull k) {
    if(k == 1) return x;
    ll res = 0;
    for(int i = 31; i >= 0; i--) {
        bool over = false;
        ull tmp = 1;
        ull nxt = res | 1ULL << i;
        REP(i, k) {
            if(tmp > x / nxt) {
                over = true;
                break;
            }
            tmp *= nxt;
        }
        if(!over) res = nxt;
    }
    return res;
}

#line 2 "library/KowerKoint/bit/bitset.hpp"

struct Bitset {
    private:
    constexpr static ull mask[] = {
        0x0000000000000000ull, 0x0000000000000001ull, 0x0000000000000003ull, 0x0000000000000007ull,
        0x000000000000000Full, 0x000000000000001Full, 0x000000000000003Full, 0x000000000000007Full,
        0x00000000000000FFull, 0x00000000000001FFull, 0x00000000000003FFull, 0x00000000000007FFull,
        0x0000000000000FFFull, 0x0000000000001FFFull, 0x0000000000003FFFull, 0x0000000000007FFFull,
        0x000000000000FFFFull, 0x000000000001FFFFull, 0x000000000003FFFFull, 0x000000000007FFFFull,
        0x00000000000FFFFFull, 0x00000000001FFFFFull, 0x00000000003FFFFFull, 0x00000000007FFFFFull,
        0x0000000000FFFFFFull, 0x0000000001FFFFFFull, 0x0000000003FFFFFFull, 0x0000000007FFFFFFull,
        0x000000000FFFFFFFull, 0x000000001FFFFFFFull, 0x000000003FFFFFFFull, 0x000000007FFFFFFFull,
        0x00000000FFFFFFFFull, 0x00000001FFFFFFFFull, 0x00000003FFFFFFFFull, 0x00000007FFFFFFFFull,
        0x0000000FFFFFFFFFull, 0x0000001FFFFFFFFFull, 0x0000003FFFFFFFFFull, 0x0000007FFFFFFFFFull,
        0x000000FFFFFFFFFFull, 0x000001FFFFFFFFFFull, 0x000003FFFFFFFFFFull, 0x000007FFFFFFFFFFull,
        0x00000FFFFFFFFFFFull, 0x00001FFFFFFFFFFFull, 0x00003FFFFFFFFFFFull, 0x00007FFFFFFFFFFFull,
        0x0000FFFFFFFFFFFFull, 0x0001FFFFFFFFFFFFull, 0x0003FFFFFFFFFFFFull, 0x0007FFFFFFFFFFFFull,
        0x000FFFFFFFFFFFFFull, 0x001FFFFFFFFFFFFFull, 0x003FFFFFFFFFFFFFull, 0x007FFFFFFFFFFFFFull,
        0x00FFFFFFFFFFFFFFull, 0x01FFFFFFFFFFFFFFull, 0x03FFFFFFFFFFFFFFull, 0x07FFFFFFFFFFFFFFull,
        0x0FFFFFFFFFFFFFFFull, 0x1FFFFFFFFFFFFFFFull, 0x3FFFFFFFFFFFFFFFull, 0x7FFFFFFFFFFFFFFFull,
        0xFFFFFFFFFFFFFFFFull
    };
    void correct() {
        if(n % 64) v[bnum-1] &= mask[n % 64];
    }
    public:
    vector<ull> v;
    int n, bnum;
    Bitset(int n_ = 0) : n(n_) {
        assert(n_ >= 0);
        bnum = (n+63) / 64;
        v.resize(bnum);
    }
    int operator[](int i) const {
        assert(0 <= i && i < n);
        return (v[i/64] >> (i%64)) & 1;
    }
    int count() const {
        int c = 0;
        for (int i = 0; i < v.size(); i++) {
            c += __builtin_popcountll(v[i]);
        }
        return c;
    }
    // not tested
    int count_range(int l, int r) const {
        assert(0 <= l && l <= r && r <= n);
        int c = 0;
        int l2 = l / 64;
        int r2 = r / 64;
        for(int i = l2; i < r2; i++) {
            c += __builtin_popcountll(v[i]);
        }
        if(l % 64) {
            c -= __builtin_popcountll(v[l2] & mask[l % 64]);
        }
        if(r % 64) {
            c += __builtin_popcountll(v[r2] & mask[r % 64]);
        }
        return c;
    }
    bool all() const {
        return count() == n;
    }
    bool any() const {
        return count() > 0;
    }
    bool none() const {
        return count() == 0;
    }
    void set(int i) {
        assert(0 <= i && i < n);
        v[i / 64] |= 1ull << (i % 64);
    }
    void reset(int i) {
        assert(0 <= i && i < n);
        v[i / 64] &= ~(1ull << (i % 64));
    }
    void flip(int i) {
        assert(0 <= i && i < n);
        v[i / 64] ^= 1ull << (i % 64);
    }
    void resize(int n_) {
        assert(n_ >= 0);
        n = n_;
        bnum = (n+63) / 64;
        v.resize(bnum);
        correct();
    }
    void all_set() {
        fill(v.begin(), v.end(),  ~0ULL);
        correct();
    }
    void all_reset() {
        fill(v.begin(), v.end(), 0);
    }
    void all_flip() {
        for (int i = 0; i < v.size(); i++) {
            v[i] = ~v[i];
        }
        correct();
    }
    Bitset& operator&=(const Bitset& b) {
        assert(n == b.n);
        for(int i = 0; i < min(bnum, b.bnum); i++) {
            v[i] &= b.v[i];
        }
        return *this;
    }
    Bitset operator&(const Bitset& b) const {
        assert(n == b.n);
        return Bitset(*this) &= b;
    }
    Bitset& operator|=(const Bitset& b) {
        assert(n == b.n);
        for(int i = 0; i < min(bnum, b.bnum); i++) {
            v[i] |= b.v[i];
        }
        correct();
        return *this;
    }
    Bitset operator|(const Bitset& b) const {
        assert(n == b.n);
        return Bitset(*this) |= b;
    }
    Bitset& operator^=(const Bitset& b) {
        assert(n == b.n);
        for(int i = 0; i < min(bnum, b.bnum); i++) {
            v[i] ^= b.v[i];
        }
        correct();
        return *this;
    }
    Bitset operator^(const Bitset& b) const {
        assert(n == b.n);
        return Bitset(*this) ^= b;
    }
    Bitset operator~() const {
        Bitset b(*this);
        b.all_flip();
        return b;
    }
    bool operator==(const Bitset& b) const {
        assert(n == b.n);
        return v == b.v;
    }
    bool operator!=(const Bitset& b) const {
        assert(n == b.n);
        return v != b.v;
    }
    Bitset& operator<<=(int sz) {
        assert(sz >= 0);
        for(int i = bnum-1; i >= 0; i--) {
            if(i-sz/64 < 0) v[i] = 0;
            else if(i-sz/64-1 < 0 || sz%64 == 0) v[i] = v[i-sz/64] << (sz%64);
            else v[i] = (v[i-sz/64] << (sz%64)) | (v[i-sz/64-1] >> (64-sz%64));
        }
        correct();
        return *this;
    }
    Bitset operator<<(int sz) const {
        assert(sz >= 0);
        return Bitset(*this) <<= sz;
    }
    Bitset& operator>>=(int sz) {
        assert(sz >= 0);
        for(int i = 0; i < bnum; i++) {
            if(i+sz/64 < bnum) v[i] = v[i+sz/64] >> (sz%64);
            if(i+sz/64+1 < bnum) v[i] |= v[i+sz/64+1] << (64-sz%64);
        }
        return *this;
    }
    Bitset operator>>(int sz) const {
        assert(sz >= 0);
        return Bitset(*this) >>= sz;
    }
};
#line 4 "library/KowerKoint/integer/prime.hpp"

struct Prime {
    Bitset sieved;
    VI primes;

    Prime() {}
    Prime(int n) {
        assert(n >= 0);
        expand(n);
    }

    void expand(int n) {
        assert(n >= 0);
        int sz = (int)sieved.n - 1;
        if(n <= sz) return;
        sieved.resize(n+1);
        sieved.set(0);
        sieved.set(1);
        primes.clear();
        if(n >= 2) primes.push_back(2);
        for(int d = 3; d <= n; d += 2) {
            if(!sieved[d]) {
                primes.push_back(d);
                for(ll i = (ll)d*d; i <= n; i += d*2) sieved.set(i);
            }
        }
    }

    bool is_prime(ull n) {
        assert(n > 0);
        if(n == 2) return true;
        if(!(n & 1)) return false;
        if(n+1 <= (ull)sieved.n) return !sieved[n];
        for(ull d = 2; d*d <= n; d++) {
            if(n % d == 0) return false;
        }
        return true;
    }

    VI prime_list(int n) {
        assert(n > 0);
        expand(n);
        return VI(primes.begin(), upper_bound(ALL(primes), n));
    }

    vector<pair<ull, int>> prime_factor(ull n) {
        assert(n > 0);
        vector<pair<ull, int>> factor;
        expand(kth_root_integer(n, 2));
        for(ull prime : primes) {
            if(prime * prime > n) break;
            int cnt = 0;
            while(n % prime == 0) {
                n /= prime;
                cnt++;
            }
            if(cnt) factor.emplace_back(prime, cnt);
        }
        if(n > 1) factor.emplace_back(n, 1);
        return factor;
    }

    VUL divisor(ull n) {
        assert(n > 0);
        auto factor = prime_factor(n);
        VUL res = {1};
        for(auto [prime, cnt] : factor) {
            int sz = res.size();
            res.resize(sz * (cnt+1));
            REP(i, sz*cnt) res[sz+i] = res[i] * prime;
            REP(i, cnt) inplace_merge(res.begin(), res.begin() + sz*(i+1), res.begin() + sz*(i+2));
        }
        return res;
    }
};
#line 3 "Contests/yukicoder_381/yukicoder_381_d/main.cpp"

/* #include <atcoder/all> */
/* using namespace atcoder; */
/* #include "KowerKoint/expansion/ac-library/all.hpp" */

void solve(){
    int max_n = 10000000;
    Prime pr(max_n);
    VI prime_list = pr.prime_list(max_n);
    VI totient(max_n+1);
    for(int i =1; i <= max_n; i++) {
        totient[i] = i;
        int x = i;
        for(int j = 0; j < prime_list.size() && prime_list[j] * prime_list[j] <= x; j++) {
            if(x % prime_list[j] == 0) {
                totient[i] = totient[i] / prime_list[j] * (prime_list[j] - 1);
                while(x % prime_list[j] == 0) x /= prime_list[j];
            }
        }
        if(x > 1) totient[i] = totient[i] / x * (x - 1);
    }
    VL totient_sum(ALL(totient));
    REP(i, max_n) totient_sum[i+1] += totient_sum[i];
    int t; cin >> t;
    while(t--) {
        ll n; cin >> n;
        print(n*(n-1) - totient_sum[n]+1);
    }
}

// generated by oj-template v4.7.2 (https://github.com/online-judge-tools/template-generator)
int main() {
    // Fasterize input/output script
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(100);
    // scanf/printf user should delete this fasterize input/output script

    int t = 1;
    //cin >> t; // comment out if solving multi testcase
    for(int testCase = 1;testCase <= t;++testCase){
        solve();
    }
    return 0;
}
0