結果
問題 | No.2249 GCDistance |
ユーザー | KowerKoint2010 |
提出日時 | 2023-03-17 22:18:49 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 4,179 ms / 5,000 ms |
コード長 | 26,299 bytes |
コンパイル時間 | 2,319 ms |
コンパイル使用メモリ | 219,636 KB |
実行使用メモリ | 128,168 KB |
最終ジャッジ日時 | 2024-09-18 11:26:29 |
合計ジャッジ時間 | 53,557 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4,112 ms
126,956 KB |
testcase_01 | AC | 4,144 ms
127,336 KB |
testcase_02 | AC | 4,141 ms
128,076 KB |
testcase_03 | AC | 4,123 ms
126,840 KB |
testcase_04 | AC | 4,105 ms
127,032 KB |
testcase_05 | AC | 4,165 ms
126,928 KB |
testcase_06 | AC | 4,167 ms
126,968 KB |
testcase_07 | AC | 4,162 ms
127,012 KB |
testcase_08 | AC | 4,115 ms
127,296 KB |
testcase_09 | AC | 4,179 ms
128,168 KB |
testcase_10 | AC | 4,158 ms
127,052 KB |
ソースコード
#line 2 "library/KowerKoint/stl-expansion.hpp"#include <bits/stdc++.h>template <typename T1, typename T2>std::istream& operator>>(std::istream& is, std::pair<T1, T2>& p) {is >> p.first >> p.second;return is;}template <typename T, size_t N>std::istream& operator>>(std::istream& is, std::array<T, N>& a) {for (size_t i = 0; i < N; ++i) {is >> a[i];}return is;}template <typename T>std::istream& operator>>(std::istream& is, std::vector<T>& v) {for (auto& e : v) is >> e;return is;}template <typename T1, typename T2>std::ostream& operator<<(std::ostream& os, const std::pair<T1, T2>& p) {os << p.first << " " << p.second;return os;}template <typename T, size_t N>std::ostream& operator<<(std::ostream& os, const std::array<T, N>& a) {for (size_t i = 0; i < N; ++i) {os << a[i] << (i + 1 == a.size() ? "" : " ");}return os;}template <typename T>std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {for (size_t i = 0; i < v.size(); ++i) {os << v[i] << (i + 1 == v.size() ? "" : " ");}return os;}#line 3 "library/KowerKoint/base.hpp"using namespace std;#define REP(i, n) for(int i = 0; i < (int)(n); i++)#define FOR(i, a, b) for(ll i = a; i < (ll)(b); i++)#define ALL(a) (a).begin(),(a).end()#define RALL(a) (a).rbegin(),(a).rend()#define END(...) { print(__VA_ARGS__); return; }using VI = vector<int>;using VVI = vector<VI>;using VVVI = vector<VVI>;using ll = long long;using VL = vector<ll>;using VVL = vector<VL>;using VVVL = vector<VVL>;using ull = unsigned long long;using VUL = vector<ull>;using VVUL = vector<VUL>;using VVVUL = vector<VVUL>;using VD = vector<double>;using VVD = vector<VD>;using VVVD = vector<VVD>;using VS = vector<string>;using VVS = vector<VS>;using VVVS = vector<VVS>;using VC = vector<char>;using VVC = vector<VC>;using VVVC = vector<VVC>;using P = pair<int, int>;using VP = vector<P>;using VVP = vector<VP>;using VVVP = vector<VVP>;using LP = pair<ll, ll>;using VLP = vector<LP>;using VVLP = vector<VLP>;using VVVLP = vector<VVLP>;template <typename T>using PQ = priority_queue<T>;template <typename T>using GPQ = priority_queue<T, vector<T>, greater<T>>;constexpr int INF = 1001001001;constexpr ll LINF = 1001001001001001001ll;constexpr int DX[] = {1, 0, -1, 0};constexpr int DY[] = {0, 1, 0, -1};void print() { cout << '\n'; }template<typename T>void print(const T &t) { cout << t << '\n'; }template<typename Head, typename... Tail>void print(const Head &head, const Tail &... tail) {cout << head << ' ';print(tail...);}#ifdef DEBUGvoid dbg() { cerr << '\n'; }template<typename T>void dbg(const T &t) { cerr << t << '\n'; }template<typename Head, typename... Tail>void dbg(const Head &head, const Tail &... tail) {cerr << head << ' ';dbg(tail...);}#elsetemplate<typename... Args>void dbg(const Args &... args) {}#endiftemplate<typename T>vector<vector<T>> split(typename vector<T>::const_iterator begin, typename vector<T>::const_iterator end, T val) {vector<vector<T>> res;vector<T> cur;for(auto it = begin; it != end; it++) {if(*it == val) {res.push_back(cur);cur.clear();} else cur.push_back(*it);}res.push_back(cur);return res;}vector<string> split(typename string::const_iterator begin, typename string::const_iterator end, char val) {vector<string> res;string cur = "";for(auto it = begin; it != end; it++) {if(*it == val) {res.push_back(cur);cur.clear();} else cur.push_back(*it);}res.push_back(cur);return res;}template< typename T1, typename T2 >inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }template< typename T1, typename T2 >inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }template <typename T>pair<VI, vector<T>> compress(const vector<T> &a) {int n = a.size();vector<T> x;REP(i, n) x.push_back(a[i]);sort(ALL(x)); x.erase(unique(ALL(x)), x.end());VI res(n);REP(i, n) res[i] = lower_bound(ALL(x), a[i]) - x.begin();return make_pair(res, x);}template <typename It>auto rle(It begin, It end) {vector<pair<typename It::value_type, int>> res;if(begin == end) return res;auto pre = *begin;int num = 1;for(auto it = begin + 1; it != end; it++) {if(pre != *it) {res.emplace_back(pre, num);pre = *it;num = 1;} else num++;}res.emplace_back(pre, num);return res;}template <typename It>vector<pair<typename It::value_type, int>> rle_sort(It begin, It end) {vector<typename It::value_type> cloned(begin, end);sort(ALL(cloned));auto e = rle(ALL(cloned));sort(ALL(e), [](const auto& l, const auto& r) { return l.second < r.second; });return e;}template <typename T>pair<vector<T>, vector<T>> factorial(int n) {vector<T> res(n+1), rev(n+1);res[0] = 1;REP(i, n) res[i+1] = res[i] * (i+1);rev[n] = 1 / res[n];for(int i = n; i > 0; i--) {rev[i-1] = rev[i] * i;}return make_pair(res, rev);}#line 3 "library/KowerKoint/integer/extgcd.hpp"constexpr ll extgcd(ll a, ll b, ll& x, ll& y) {x = 1, y = 0;ll nx = 0, ny = 1;while(b) {ll q = a / b;ll r = a % b;a = b, b = r;ll nnx = x - q * nx;ll nny = y - q * ny;x = nx, nx = nnx;y = ny, ny = nny;}return a;}#line 3 "library/KowerKoint/integer/pow-mod.hpp"constexpr ll inv_mod(ll n, ll m) {n %= m;if (n < 0) n += m;ll x = -1, y = -1;if(extgcd(n, m, x, y) != 1) throw logic_error("");x %= m;if(x < 0) x += m;return x;}constexpr ll pow_mod(ll a, ll n, ll m) {if(n == 0) return 1LL;if(n < 0) return inv_mod(pow_mod(a, -n, m), m);a %= m;if (a < 0) n += m;ll res = 1;while(n) {if(n & 1) {res *= a;res %= m;}n >>= 1;a *= a;a %= m;}return res;}#line 3 "library/KowerKoint/algebra/field.hpp"template <typename T>struct SumGroupBase {constexpr static bool defzero = false;using Coef = nullptr_t;using Scalar = nullptr_t;};template <typename T>struct ProdGroupBase {constexpr static bool defone = false;};template <typename T>struct RepresentationBase {using R = T;constexpr static T construct(const R& x) { return x; }constexpr static R represent(const T& x) { return x; }};template <typename T>struct CompareBase {constexpr static bool eq(const T& x, const T& y) { return x == y; }constexpr static bool lt(const T& x, const T& y) { return x < y; }};template <typename T>struct FinitePropertyBase {constexpr static bool is_finite = false;};template <typename T, typename SumGroup = SumGroupBase<T>, typename ProdGroup = ProdGroupBase<T>, typename Representation = RepresentationBase<T>,typename Compare = CompareBase<T>, typename FiniteProperty = FinitePropertyBase<T>>struct Field {using R = typename Representation::R;using Coef = typename SumGroup::Coef;using Scalar = typename SumGroup::Scalar;T val;constexpr static Field zero() {return SumGroup::zero;}constexpr static Field one() {return ProdGroup::one;}constexpr static bool defzero = SumGroup::defzero;constexpr static bool defone = ProdGroup::defone;constexpr static bool is_finite = FiniteProperty::is_finite;constexpr Field() {if constexpr(SumGroup::defzero) val = SumGroup::zero;else if constexpr(SumGroup::defone) val = ProdGroup::one;else val = T();}constexpr Field(const R& r) : val(Representation::construct(r)) {}constexpr R represent() const { return Representation::represent(val); }constexpr decltype(auto) operator[](size_t i) const {return val[i];}constexpr static Field premitive_root() {return FiniteProperty::premitive_root();}constexpr static size_t order() {return FiniteProperty::order();}constexpr Field& operator*=(const Field& other) {ProdGroup::mulassign(val, other.val);return *this;}constexpr Field operator*(const Field& other) const {return Field(*this) *= other;}constexpr Field inv() const {return ProdGroup::inv(val);}constexpr Field& operator/=(const Field& other) {return *this *= other.inv();}constexpr Field operator/(const Field& other) const {return Field(*this) /= other;}constexpr Field pow(ll n) const {if(n < 0) {return inv().pow(-n);}Field res = one();Field a = *this;while(n > 0) {if(n & 1) res *= a;a *= a;n >>= 1;}return res;}constexpr Field operator+() const {return *this;}constexpr Field& operator+=(const Field& other) {SumGroup::addassign(val, other.val);return *this;}constexpr Field operator+(const Field& other) const {return Field(*this) += other;}constexpr Field operator-() const {return SumGroup::minus(val);}constexpr Field& operator-=(const Field& other) {return *this += -other;}constexpr Field operator-(const Field& other) const {return Field(*this) -= other;}constexpr Field& operator++() {return *this += one();}Field operator++(int) {Field ret = *this;++*this;return ret;}constexpr Field& operator--() {return *this -= one();}Field operator--(int) {Field ret = *this;--*this;return ret;}constexpr Field& operator*=(const Coef& other) {SumGroup::coefassign(val, other);return *this;}constexpr Field operator*(const Coef& other) const {return Field(*this) *= other;}constexpr Scalar dot(const Field& other) const {return SumGroup::dot(val, other.val);}constexpr Scalar norm() const {return dot(*this);}constexpr bool operator==(const Field& other) const {return Compare::eq(val, other.val);}constexpr bool operator!=(const Field& other) const {return !(*this == other);}constexpr bool operator<(const Field& other) const {return Compare::lt(represent(), other.represent());}constexpr bool operator>(const Field& other) const {return other < *this;}constexpr bool operator<=(const Field& other) const {return !(*this > other);}constexpr bool operator>=(const Field& other) const {return !(*this < other);}friend istream& operator>>(istream& is, Field& f) {R r; is >> r;f = r;return is;}friend ostream& operator<<(ostream& os, const Field& f) {return os << f.represent();}};namespace std {template <typename T>struct hash<Field<T>> {size_t operator()(const Field<T>& f) const {return hash<typename Field<T>::R>()(f.represent());}};}template <typename>struct is_field : false_type {};template <typename T, typename SumGroup, typename ProdGroup, typename Representation, typename FiniteProperty>struct is_field<Field<T, SumGroup, ProdGroup, Representation, FiniteProperty>> : true_type {};template <typename T>constexpr bool is_field_v = is_field<T>::value;template <typename T>constexpr T zero() {if constexpr(is_field_v<T>) return T::zero();else return 0;}template <typename T>constexpr T one() {if constexpr(is_field_v<T>) return T::one();else return 1;}template <typename T>constexpr bool is_finite() {if constexpr(is_field_v<T>) return T::is_finite;else return false;}#line 4 "library/KowerKoint/algebra/modint.hpp"template <ll mod>struct SumGroupModint : SumGroupBase<ll> {static ll& addassign(ll& l, const ll& r) {ll ret;if(__builtin_add_overflow(l, r, &ret)) {l = l % mod + r % mod;} else {l = ret;}return l;}constexpr static bool defzero = true;constexpr static ll zero = 0;constexpr static ll minus(const ll& x) {return -x;}};template <ll mod>struct ProdGroupModint : ProdGroupBase<ll> {constexpr static bool defmul = true;static ll& mulassign(ll& l, const ll& r) {ll ret;if(__builtin_mul_overflow(l, r, &ret)) {l = (l % mod) * (r % mod);} else {l = ret;}return l;}constexpr static bool defone = true;constexpr static ll one = 1;constexpr static bool definv = true;constexpr static ll inv(const ll& x) {return inv_mod(x, mod);}};template <ll mod>struct RepresentationModint : RepresentationBase<ll> {using R = ll;constexpr static ll construct(const R& x) { return x % mod; }constexpr static R represent(const ll& x) {ll ret = x % mod;if(ret < 0) ret += mod;return ret;}};template <ll mod>struct CompareModint : CompareBase<ll> {constexpr static bool lt(const ll& l, const ll& r) {return RepresentationModint<mod>::represent(l) < RepresentationModint<mod>::represent(r);}constexpr static bool eq(const ll& l, const ll& r) {return RepresentationModint<mod>::represent(l) == RepresentationModint<mod>::represent(r);}};template <ll mod>struct FinitePropertyModint : FinitePropertyBase<ll> {constexpr static bool is_finite = true;constexpr static ll premitive_root() {static_assert(mod == 998244353);return 3;}constexpr static size_t order() {return mod - 1;}};template <ll mod>using Modint = Field<ll, SumGroupModint<mod>, ProdGroupModint<mod>, RepresentationModint<mod>, CompareModint<mod>, FinitePropertyModint<mod>>;using MI3 = Modint<998244353>;using V3 = vector<MI3>;using VV3 = vector<V3>;using VVV3 = vector<VV3>;using MI7 = Modint<1000000007>;using V7 = vector<MI7>;using VV7 = vector<V7>;using VVV7 = vector<VV7>;#line 3 "library/KowerKoint/counting/counting.hpp"template <typename T>struct Counting {vector<T> fact, ifact;Counting() {}Counting(ll n) {assert(n >= 0);expand(n);}void expand(ll n) {assert(n >= 0);ll sz = (ll)fact.size();if(sz > n) return;fact.resize(n+1);ifact.resize(n+1);fact[0] = 1;FOR(i, max(1LL, sz), n+1) fact[i] = fact[i-1] * i;ifact[n] = fact[n].inv();for(ll i = n-1; i >= sz; i--) ifact[i] = ifact[i+1] * (i+1);}T p(ll n, ll r) {if(n < r) return 0;assert(r >= 0);expand(n);return fact[n] * ifact[n-r];}T c(ll n, ll r) {if(n < r) return 0;assert(r >= 0);expand(n);return fact[n] * ifact[r] * ifact[n-r];}T h(ll n, ll r) {assert(n >= 0);assert(r >= 0);return c(n+r-1, r);}T stirling(ll n, ll k) {if(n < k) return 0;assert(k >= 0);if(n == 0) return 1;T res = 0;T sign = k%2? -1 : 1;expand(k);REP(i, k+1) {res += sign * ifact[i] * ifact[k-i] * T(i).pow(n);sign *= -1;}return res;}vector<vector<T>> stirling_table(ll n, ll k) {assert(n >= 0 && k >= 0);vector<vector<T>> res(n+1, vector<T>(k+1));res[0][0] = 1;FOR(i, 1, n+1) FOR(j, 1, k+1) {res[i][j] = res[i-1][j-1] + j * res[i-1][j];}return res;}T bell(ll n, ll k) {assert(n >= 0 && k >= 0);expand(k);vector<T> tmp(k+1);T sign = 1;tmp[0] = 1;FOR(i, 1, k+1) {sign *= -1;tmp[i] = tmp[i-1] + sign * ifact[i];}T res = 0;REP(i, k+1) {res += T(i).pow(n) * ifact[i] * tmp[k-i];}return res;}vector<vector<T>> partition_table(ll n, ll k) {assert(n >= 0 && k >= 0);vector<vector<T>> res(n+1, vector<T>(k+1));REP(i, k+1) res[0][i] = 1;FOR(i, 1, n+1) FOR(j, 1, k+1) {res[i][j] = res[i][j-1] + (i<j? 0 : res[i-j][j]);}return res;}};#line 3 "library/KowerKoint/integer/kth-root-integer.hpp"ull kth_root_integer(ull x, ull k) {if(k == 1) return x;ll res = 0;for(int i = 31; i >= 0; i--) {bool over = false;ull tmp = 1;ull nxt = res | 1ULL << i;REP(i, k) {if(tmp > x / nxt) {over = true;break;}tmp *= nxt;}if(!over) res = nxt;}return res;}#line 2 "library/KowerKoint/bit/bitset.hpp"struct Bitset {private:constexpr static ull mask[] = {0x0000000000000000ull, 0x0000000000000001ull, 0x0000000000000003ull, 0x0000000000000007ull,0x000000000000000Full, 0x000000000000001Full, 0x000000000000003Full, 0x000000000000007Full,0x00000000000000FFull, 0x00000000000001FFull, 0x00000000000003FFull, 0x00000000000007FFull,0x0000000000000FFFull, 0x0000000000001FFFull, 0x0000000000003FFFull, 0x0000000000007FFFull,0x000000000000FFFFull, 0x000000000001FFFFull, 0x000000000003FFFFull, 0x000000000007FFFFull,0x00000000000FFFFFull, 0x00000000001FFFFFull, 0x00000000003FFFFFull, 0x00000000007FFFFFull,0x0000000000FFFFFFull, 0x0000000001FFFFFFull, 0x0000000003FFFFFFull, 0x0000000007FFFFFFull,0x000000000FFFFFFFull, 0x000000001FFFFFFFull, 0x000000003FFFFFFFull, 0x000000007FFFFFFFull,0x00000000FFFFFFFFull, 0x00000001FFFFFFFFull, 0x00000003FFFFFFFFull, 0x00000007FFFFFFFFull,0x0000000FFFFFFFFFull, 0x0000001FFFFFFFFFull, 0x0000003FFFFFFFFFull, 0x0000007FFFFFFFFFull,0x000000FFFFFFFFFFull, 0x000001FFFFFFFFFFull, 0x000003FFFFFFFFFFull, 0x000007FFFFFFFFFFull,0x00000FFFFFFFFFFFull, 0x00001FFFFFFFFFFFull, 0x00003FFFFFFFFFFFull, 0x00007FFFFFFFFFFFull,0x0000FFFFFFFFFFFFull, 0x0001FFFFFFFFFFFFull, 0x0003FFFFFFFFFFFFull, 0x0007FFFFFFFFFFFFull,0x000FFFFFFFFFFFFFull, 0x001FFFFFFFFFFFFFull, 0x003FFFFFFFFFFFFFull, 0x007FFFFFFFFFFFFFull,0x00FFFFFFFFFFFFFFull, 0x01FFFFFFFFFFFFFFull, 0x03FFFFFFFFFFFFFFull, 0x07FFFFFFFFFFFFFFull,0x0FFFFFFFFFFFFFFFull, 0x1FFFFFFFFFFFFFFFull, 0x3FFFFFFFFFFFFFFFull, 0x7FFFFFFFFFFFFFFFull,0xFFFFFFFFFFFFFFFFull};void correct() {if(n % 64) v[bnum-1] &= mask[n % 64];}public:vector<ull> v;int n, bnum;Bitset(int n_ = 0) : n(n_) {assert(n_ >= 0);bnum = (n+63) / 64;v.resize(bnum);}int operator[](int i) const {assert(0 <= i && i < n);return (v[i/64] >> (i%64)) & 1;}int count() const {int c = 0;for (int i = 0; i < v.size(); i++) {c += __builtin_popcountll(v[i]);}return c;}// not testedint count_range(int l, int r) const {assert(0 <= l && l <= r && r <= n);int c = 0;int l2 = l / 64;int r2 = r / 64;for(int i = l2; i < r2; i++) {c += __builtin_popcountll(v[i]);}if(l % 64) {c -= __builtin_popcountll(v[l2] & mask[l % 64]);}if(r % 64) {c += __builtin_popcountll(v[r2] & mask[r % 64]);}return c;}bool all() const {return count() == n;}bool any() const {return count() > 0;}bool none() const {return count() == 0;}void set(int i) {assert(0 <= i && i < n);v[i / 64] |= 1ull << (i % 64);}void reset(int i) {assert(0 <= i && i < n);v[i / 64] &= ~(1ull << (i % 64));}void flip(int i) {assert(0 <= i && i < n);v[i / 64] ^= 1ull << (i % 64);}void resize(int n_) {assert(n_ >= 0);n = n_;bnum = (n+63) / 64;v.resize(bnum);correct();}void all_set() {fill(v.begin(), v.end(), ~0ULL);correct();}void all_reset() {fill(v.begin(), v.end(), 0);}void all_flip() {for (int i = 0; i < v.size(); i++) {v[i] = ~v[i];}correct();}Bitset& operator&=(const Bitset& b) {assert(n == b.n);for(int i = 0; i < min(bnum, b.bnum); i++) {v[i] &= b.v[i];}return *this;}Bitset operator&(const Bitset& b) const {assert(n == b.n);return Bitset(*this) &= b;}Bitset& operator|=(const Bitset& b) {assert(n == b.n);for(int i = 0; i < min(bnum, b.bnum); i++) {v[i] |= b.v[i];}correct();return *this;}Bitset operator|(const Bitset& b) const {assert(n == b.n);return Bitset(*this) |= b;}Bitset& operator^=(const Bitset& b) {assert(n == b.n);for(int i = 0; i < min(bnum, b.bnum); i++) {v[i] ^= b.v[i];}correct();return *this;}Bitset operator^(const Bitset& b) const {assert(n == b.n);return Bitset(*this) ^= b;}Bitset operator~() const {Bitset b(*this);b.all_flip();return b;}bool operator==(const Bitset& b) const {assert(n == b.n);return v == b.v;}bool operator!=(const Bitset& b) const {assert(n == b.n);return v != b.v;}Bitset& operator<<=(int sz) {assert(sz >= 0);for(int i = bnum-1; i >= 0; i--) {if(i-sz/64 < 0) v[i] = 0;else if(i-sz/64-1 < 0 || sz%64 == 0) v[i] = v[i-sz/64] << (sz%64);else v[i] = (v[i-sz/64] << (sz%64)) | (v[i-sz/64-1] >> (64-sz%64));}correct();return *this;}Bitset operator<<(int sz) const {assert(sz >= 0);return Bitset(*this) <<= sz;}Bitset& operator>>=(int sz) {assert(sz >= 0);for(int i = 0; i < bnum; i++) {if(i+sz/64 < bnum) v[i] = v[i+sz/64] >> (sz%64);if(i+sz/64+1 < bnum) v[i] |= v[i+sz/64+1] << (64-sz%64);}return *this;}Bitset operator>>(int sz) const {assert(sz >= 0);return Bitset(*this) >>= sz;}};#line 4 "library/KowerKoint/integer/prime.hpp"struct Prime {Bitset sieved;VI primes;Prime() {}Prime(int n) {assert(n >= 0);expand(n);}void expand(int n) {assert(n >= 0);int sz = (int)sieved.n - 1;if(n <= sz) return;sieved.resize(n+1);sieved.set(0);sieved.set(1);primes.clear();if(n >= 2) primes.push_back(2);for(int d = 3; d <= n; d += 2) {if(!sieved[d]) {primes.push_back(d);for(ll i = (ll)d*d; i <= n; i += d*2) sieved.set(i);}}}bool is_prime(ull n) {assert(n > 0);if(n == 2) return true;if(!(n & 1)) return false;if(n+1 <= (ull)sieved.n) return !sieved[n];for(ull d = 2; d*d <= n; d++) {if(n % d == 0) return false;}return true;}VI prime_list(int n) {assert(n > 0);expand(n);return VI(primes.begin(), upper_bound(ALL(primes), n));}vector<pair<ull, int>> prime_factor(ull n) {assert(n > 0);vector<pair<ull, int>> factor;expand(kth_root_integer(n, 2));for(ull prime : primes) {if(prime * prime > n) break;int cnt = 0;while(n % prime == 0) {n /= prime;cnt++;}if(cnt) factor.emplace_back(prime, cnt);}if(n > 1) factor.emplace_back(n, 1);return factor;}VUL divisor(ull n) {assert(n > 0);auto factor = prime_factor(n);VUL res = {1};for(auto [prime, cnt] : factor) {int sz = res.size();res.resize(sz * (cnt+1));REP(i, sz*cnt) res[sz+i] = res[i] * prime;REP(i, cnt) inplace_merge(res.begin(), res.begin() + sz*(i+1), res.begin() + sz*(i+2));}return res;}};#line 3 "Contests/yukicoder_381/yukicoder_381_d/main.cpp"/* #include <atcoder/all> *//* using namespace atcoder; *//* #include "KowerKoint/expansion/ac-library/all.hpp" */void solve(){int max_n = 10000000;Prime pr(max_n);VI prime_list = pr.prime_list(max_n);VI totient(max_n+1);for(int i =1; i <= max_n; i++) {totient[i] = i;int x = i;for(int j = 0; j < prime_list.size() && prime_list[j] * prime_list[j] <= x; j++) {if(x % prime_list[j] == 0) {totient[i] = totient[i] / prime_list[j] * (prime_list[j] - 1);while(x % prime_list[j] == 0) x /= prime_list[j];}}if(x > 1) totient[i] = totient[i] / x * (x - 1);}VL totient_sum(ALL(totient));REP(i, max_n) totient_sum[i+1] += totient_sum[i];int t; cin >> t;while(t--) {ll n; cin >> n;print(n*(n-1) - totient_sum[n]+1);}}// generated by oj-template v4.7.2 (https://github.com/online-judge-tools/template-generator)int main() {// Fasterize input/output scriptios::sync_with_stdio(false);cin.tie(nullptr);cout << fixed << setprecision(100);// scanf/printf user should delete this fasterize input/output scriptint t = 1;//cin >> t; // comment out if solving multi testcasefor(int testCase = 1;testCase <= t;++testCase){solve();}return 0;}