結果
問題 | No.2249 GCDistance |
ユーザー | poyon |
提出日時 | 2023-03-17 22:26:15 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,223 ms / 5,000 ms |
コード長 | 9,249 bytes |
コンパイル時間 | 2,185 ms |
コンパイル使用メモリ | 209,928 KB |
実行使用メモリ | 120,460 KB |
最終ジャッジ日時 | 2024-09-18 11:34:55 |
合計ジャッジ時間 | 18,516 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 10 |
ソースコード
// clang-format off #ifdef _LOCAL #include <pch.hpp> #else #include <bits/stdc++.h> #define cerr if (false) cerr #define debug_bar #define debug(...) #define debug2(vv) #define debug3(vvv) #endif using namespace std; using ll = long long; using ld = long double; using str = string; using P = pair<ll,ll>; using VP = vector<P>; using VVP = vector<VP>; using VC = vector<char>; using VS = vector<string>; using VVS = vector<VS>; using VI = vector<int>; using VVI = vector<VI>; using VVVI = vector<VVI>; using VLL = vector<ll>; using VVLL = vector<VLL>; using VVVLL = vector<VVLL>; using VB = vector<bool>; using VVB = vector<VB>; using VVVB = vector<VVB>; using VD = vector<double>; using VVD = vector<VD>; using VVVD = vector<VVD>; #define FOR(i,l,r) for (ll i = (l); i < (r); ++i) #define RFOR(i,l,r) for (ll i = (r)-1; (l) <= i; --i) #define REP(i,n) FOR(i,0,n) #define RREP(i,n) RFOR(i,0,n) #define FORE(e,c) for (auto&& e : c) #define ALL(c) (c).begin(), (c).end() #define SORT(c) sort(ALL(c)) #define RSORT(c) sort((c).rbegin(), (c).rend()) #define MIN(c) *min_element(ALL(c)) #define MAX(c) *max_element(ALL(c)) #define COUNT(c,v) count(ALL(c),(v)) #define len(c) ((ll)(c).size()) #define BIT(b,i) (((b)>>(i)) & 1) #define PCNT(b) ((ll)__builtin_popcountll(b)) #define LB(c,v) distance((c).begin(), lower_bound(ALL(c), (v))) #define UB(c,v) distance((c).begin(), upper_bound(ALL(c), (v))) #define UQ(c) do { SORT(c); (c).erase(unique(ALL(c)), (c).end()); (c).shrink_to_fit(); } while (0) #define END(...) do { print(__VA_ARGS__); exit(0); } while (0) constexpr ld EPS = 1e-10; constexpr ld PI = acosl(-1.0); constexpr int inf = (1 << 30) - (1 << 15); // 1,073,709,056 constexpr ll INF = (1LL << 62) - (1LL << 31); // 4,611,686,016,279,904,256 template<class... T> void input(T&... a) { (cin >> ... >> a); } void print() { cout << '\n'; } template<class T> void print(const T& a) { cout << a << '\n'; } template<class P1, class P2> void print(const pair<P1, P2>& a) { cout << a.first << " " << a.second << '\n'; } template<class T, class... Ts> void print(const T& a, const Ts&... b) { cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; } template<class T> void cout_line(const vector<T>& ans, int l, int r) { for (int i = l; i < r; i++) { if (i != l) { cout << ' '; } cout << ans[i]; } cout << '\n'; } template<class T> void print(const vector<T>& a) { cout_line(a, 0, a.size()); } template<class S, class T> bool chmin(S& a, const T b) { if (b < a) { a = b; return 1; } return 0; } template<class S, class T> bool chmax(S& a, const T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> T SUM(const vector<T>& A) { return accumulate(ALL(A), T(0)); } template<class T> vector<T> cumsum(const vector<T>& A, bool offset = false) { int N = A.size(); vector<T> S(N+1, 0); for (int i = 0; i < N; i++) { S[i+1] = S[i] + A[i]; } if (not offset) { S.erase(S.begin()); } return S; } template<class T> string to_binary(T x, int B = 0) { string s; while (x) { s += ('0' + (x & 1)); x >>= 1; } while ((int)s.size() < B) { s += '0'; } reverse(s.begin(), s.end()); return s; } template<class F> ll binary_search(const F& is_ok, ll ok, ll ng) { while (abs(ok - ng) > 1) { ll m = (ok + ng) / 2; (is_ok(m) ? ok : ng) = m; } return ok; } template<class F> double binary_search_real(const F& is_ok, double ok, double ng, int iter = 90) { for (int i = 0; i < iter; i++) { double m = (ok + ng) / 2; (is_ok(m) ? ok : ng) = m; } return ok; } template<class T> using PQ_max = priority_queue<T>; template<class T> using PQ_min = priority_queue<T, vector<T>, greater<T>>; template<class T> T pick(stack<T>& s) { assert(not s.empty()); T x = s.top(); s.pop(); return x; } template<class T> T pick(queue<T>& q) { assert(not q.empty()); T x = q.front(); q.pop(); return x; } template<class T> T pick_front(deque<T>& dq) { assert(not dq.empty()); T x = dq.front(); dq.pop_front(); return x; } template<class T> T pick_back(deque<T>& dq) { assert(not dq.empty()); T x = dq.back(); dq.pop_back(); return x; } template<class T> T pick(PQ_min<T>& pq) { assert(not pq.empty()); T x = pq.top(); pq.pop(); return x; } template<class T> T pick(PQ_max<T>& pq) { assert(not pq.empty()); T x = pq.top(); pq.pop(); return x; } template<class T> T pick(vector<T>& v) { assert(not v.empty()); T x = v.back(); v.pop_back(); return x; } int to_int(const char c) { if (islower(c)) { return (c - 'a'); } if (isupper(c)) { return (c - 'A'); } if (isdigit(c)) { return (c - '0'); } assert(false); } char to_a(const int i) { assert(0 <= i && i < 26); return ('a' + i); } char to_A(const int i) { assert(0 <= i && i < 26); return ('A' + i); } char to_d(const int i) { assert(0 <= i && i <= 9); return ('0' + i); } ll min(int a, ll b) { return min((ll)a, b); } ll min(ll a, int b) { return min(a, (ll)b); } ll max(int a, ll b) { return max((ll)a, b); } ll max(ll a, int b) { return max(a, (ll)b); } ll mod(ll x, ll m) { assert(m > 0); return (x % m + m) % m; } ll ceil(ll a, ll b) { if (b < 0) { return ceil(-a, -b); } assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); } ll floor(ll a, ll b) { if (b < 0) { return floor(-a, -b); } assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); } ll powint(ll x, ll n) { assert(n >= 0); if (n == 0) { return 1; }; ll res = powint(x, n>>1); res *= res; if (n & 1) { res *= x; } return res; } pair<ll,ll> divmod(ll a, ll b) { assert(b != 0); ll q = floor(a, b); return make_pair(q, a - q * b); } ll bitlen(ll b) { if (b <= 0) { return 0; } return (64LL - __builtin_clzll(b)); } ll digitlen(ll n) { assert(n >= 0); if (n == 0) { return 1; } ll sum = 0; while (n > 0) { sum++; n /= 10; } return sum; } ll msb(ll b) { return (b <= 0 ? -1 : (63 - __builtin_clzll(b))); } ll lsb(ll b) { return (b <= 0 ? -1 : __builtin_ctzll(b)); } // -------------------------------------------------------- // エラトステネスの篩 struct eratosthenes { public: // 前計算 // - O(N log log N) eratosthenes(int N) : N(N) { D.resize(N+1); iota(D.begin(), D.end(), 0); for (int p : {2, 3, 5}) { for (int i = p*p; i <= N; i += p) { if (D[i] == i) { D[i] = p; } } } vector<int> inc = {4, 2, 4, 2, 4, 6, 2, 6}; int p = 7, idx = 0; int root = floor(sqrt(N) + 0.5); while (p <= root) { if (D[p] == p) { for (int i = p*p; i <= N; i += p) { if (D[i] == i) { D[i] = p; } } } p += inc[idx++]; if (idx == 8) { idx = 0; } } } // 素数判定 // - O(1) bool is_prime(int x) const { assert(1 <= x && x <= N); if (x == 1) { return false; } return D[x] == x; } // 素因数分解 // - O(log x), 厳密には O(Σi ei) vector<pair<int,int>> factorize(int x) const { assert(1 <= x && x <= N); vector<pair<int,int>> F; while (x != 1) { int p = D[x]; int e = 0; while (x % p == 0) { x /= p; e++; } F.emplace_back(p, e); } return F; } // 約数列挙 // - O(Πi(1+ei)) // - ソートされていないことに注意 vector<int> calc_divisors(int x) const { assert(1 <= x && x <= N); int n = 1; // 約数の個数 vector<pair<int,int>> F; while (x != 1) { int p = D[x]; int e = 0; while (x % p == 0) { x /= p; e++; } F.emplace_back(p, e); n *= (1 + e); } vector<int> divisors(n,1); int sz = 1; // 現在の約数の個数 for (const auto& [p, e] : F) { for (int i = 0; i < sz * e; i++) { divisors[sz + i] = divisors[i] * p; } sz *= (1 + e); } return divisors; } // 最小素因数 (least prime factor) // - O(1) int lpf(int x) const { assert(1 <= x && x <= N); return D[x]; } /** TODO: Verify **/ // オイラーの φ 関数 // 1 から x までの整数のうち x と互いに素なものの個数 φ(x) // - O(log x), 厳密には O(Σi ei) int euler_phi(int x) const { assert(1 <= x && x <= N); int res = x; while (x != 1) { int p = D[x]; res -= res / p; while (x % p == 0) { x /= p; } } return res; } // メビウス関数のテーブルを計算する // - O(N) vector<int> calc_moebius() const { vector<int> moebius(N+1, 0); moebius[1] = 1; for (int x = 2; x <= N; x++) { int y = x / D[x]; if (D[x] != D[y]) { moebius[x] = -moebius[y]; } } return moebius; } private: int N; vector<int> D; // 最小素因数 (least prime factor) }; // clang-format on int main() { ios::sync_with_stdio(false); cin.tie(nullptr); cout << fixed << setprecision(15); ll M = 1e7; eratosthenes era(M); VLL dp(M+1); FOR(i,2,M+1) { dp[i] = dp[i-1] + era.euler_phi(i); } int tt; cin >> tt; while (tt--) { ll N; input(N); ll f = N * (N - 1) / 2; ll ans = f + (f - dp[N]); print(ans); } return 0; }