結果

問題 No.2247 01 ZigZag
ユーザー erbowlerbowl
提出日時 2023-03-17 22:54:45
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 8 ms / 2,000 ms
コード長 16,303 bytes
コンパイル時間 3,143 ms
コンパイル使用メモリ 216,000 KB
最終ジャッジ日時 2025-02-11 14:05:31
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 50
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

typedef long long ll;
typedef long double ld;
#include <bits/stdc++.h>
using namespace std;
#define int long long
struct UnionFind {
vector<int> par;
UnionFind() { }
UnionFind(int n) : par(n, -1) { }
void init(int n) { par.assign(n, -1); }
int root(int x) {
if (par[x] < 0) return x;
else return par[x] = root(par[x]);
}
bool issame(int x, int y) {
return root(x) == root(y);
}
bool merge(int x, int y) {
x = root(x); y = root(y);
if (x == y) return false;
if (x > y) swap(x, y); // merge technique
par[x] += par[y];
par[y] = x;
return true;
}
int size(int x) {
return -par[root(x)];
}
};
// modint (replace MODS[0] on runtime)
// vector<int> MODS = { 1000000007 };
vector<int> MODS = { 998244353 };
template<int IND = 0> struct Fp {
long long val;
constexpr Fp(long long v = 0) noexcept : val(v % MODS[IND]) {
if (val < 0) val += MODS[IND];
}
constexpr int getmod() const { return MODS[IND]; }
constexpr Fp operator - () const noexcept {
return val ? MODS[IND] - val : 0;
}
constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }
constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }
constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }
constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }
constexpr Fp& operator += (const Fp& r) noexcept {
val += r.val;
if (val >= MODS[IND]) val -= MODS[IND];
return *this;
}
constexpr Fp& operator -= (const Fp& r) noexcept {
val -= r.val;
if (val < 0) val += MODS[IND];
return *this;
}
constexpr Fp& operator *= (const Fp& r) noexcept {
val = val * r.val % MODS[IND];
return *this;
}
constexpr Fp& operator /= (const Fp& r) noexcept {
long long a = r.val, b = MODS[IND], u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
val = val * u % MODS[IND];
if (val < 0) val += MODS[IND];
return *this;
}
constexpr bool operator == (const Fp& r) const noexcept {
return this->val == r.val;
}
constexpr bool operator != (const Fp& r) const noexcept {
return this->val != r.val;
}
friend constexpr istream& operator >> (istream& is, Fp<IND>& x) noexcept {
is >> x.val;
x.val %= MODS[IND];
if (x.val < 0) x.val += MODS[IND];
return is;
}
friend constexpr ostream& operator << (ostream& os, const Fp<IND>& x) noexcept {
return os << x.val;
}
friend constexpr Fp<IND> modpow(const Fp<IND>& r, long long n) noexcept {
if (n == 0) return 1;
if (n < 0) return modpow(modinv(r), -n);
auto t = modpow(r, n / 2);
t = t * t;
if (n & 1) t = t * r;
return t;
}
friend constexpr Fp<IND> modinv(const Fp<IND>& r) noexcept {
long long a = r.val, b = MODS[IND], u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b, swap(a, b);
u -= t * v, swap(u, v);
}
return Fp<IND>(u);
}
};
// Binomial coefficient
template<class T> struct BiCoef {
vector<T> fact_, inv_, finv_;
constexpr BiCoef() {}
constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
init(n);
}
constexpr void init(int n) noexcept {
fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
int MOD = fact_[0].getmod();
for(int i = 2; i < n; i++){
fact_[i] = fact_[i-1] * i;
inv_[i] = -inv_[MOD%i] * (MOD/i);
finv_[i] = finv_[i-1] * inv_[i];
}
}
constexpr T com(int n, int k) const noexcept {
if (n < k || n < 0 || k < 0) return 0;
return fact_[n] * finv_[k] * finv_[n-k];
}
constexpr T fact(int n) const noexcept {
if (n < 0) return 0;
return fact_[n];
}
constexpr T inv(int n) const noexcept {
if (n < 0) return 0;
return inv_[n];
}
constexpr T finv(int n) const noexcept {
if (n < 0) return 0;
return finv_[n];
}
};
bool is_prime(long long n) {
if (n <= 1) return false;
for (long long p = 2; p * p <= n; ++p) {
if (n % p == 0) return false;
}
return true;
}
// Segment Tree
template<class Monoid> struct SegTree {
using Func = function<Monoid(Monoid, Monoid)>;
int N;
Func F;
Monoid IDENTITY;
int SIZE_R;
vector<Monoid> dat;
/* initialization */
SegTree() {}
SegTree(int n, const Func f, const Monoid &identity)
: N(n), F(f), IDENTITY(identity) {
SIZE_R = 1;
while (SIZE_R < n) SIZE_R *= 2;
dat.assign(SIZE_R * 2, IDENTITY);
}
void init(int n, const Func f, const Monoid &identity) {
N = n;
F = f;
IDENTITY = identity;
SIZE_R = 1;
while (SIZE_R < n) SIZE_R *= 2;
dat.assign(SIZE_R * 2, IDENTITY);
}
/* set, a is 0-indexed */
/* build(): O(N) */
void set(int a, const Monoid &v) { dat[a + SIZE_R] = v; }
void build() {
for (int k = SIZE_R - 1; k > 0; --k)
dat[k] = F(dat[k*2], dat[k*2+1]);
}
/* update a, a is 0-indexed, O(log N) */
void update(int a, const Monoid &v) {
int k = a + SIZE_R;
dat[k] = v;
while (k >>= 1) dat[k] = F(dat[k*2], dat[k*2+1]);
}
/* get [a, b), a and b are 0-indexed, O(log N) */
Monoid get(int a, int b) {
Monoid vleft = IDENTITY, vright = IDENTITY;
for (int left = a + SIZE_R, right = b + SIZE_R; left < right;
left >>= 1, right >>= 1) {
if (left & 1) vleft = F(vleft, dat[left++]);
if (right & 1) vright = F(dat[--right], vright);
}
return F(vleft, vright);
}
Monoid all_get() { return dat[1]; }
Monoid operator [] (int a) { return dat[a + SIZE_R]; }
/* get max r that f(get(l, r)) = True (0-indexed), O(log N) */
/* f(IDENTITY) need to be True */
int max_right(const function<bool(Monoid)> f, int l = 0) {
if (l == N) return N;
l += SIZE_R;
Monoid sum = IDENTITY;
do {
while (l % 2 == 0) l >>= 1;
if (!f(F(sum, dat[l]))) {
while (l < SIZE_R) {
l = l * 2;
if (f(F(sum, dat[l]))) {
sum = F(sum, dat[l]);
++l;
}
}
return l - SIZE_R;
}
sum = F(sum, dat[l]);
++l;
} while ((l & -l) != l); // stop if l = 2^e
return N;
}
/* get min l that f(get(l, r)) = True (0-indexed), O(log N) */
/* f(IDENTITY) need to be True */
int min_left(const function<bool(Monoid)> f, int r = -1) {
if (r == 0) return 0;
if (r == -1) r = N;
r += SIZE_R;
Monoid sum = IDENTITY;
do {
--r;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(F(dat[r], sum))) {
while (r < SIZE_R) {
r = r * 2 + 1;
if (f(F(dat[r], sum))) {
sum = F(dat[r], sum);
--r;
}
}
return r + 1 - SIZE_R;
}
sum = F(dat[r], sum);
} while ((r & -r) != r);
return 0;
}
/* debug */
void print() {
for (int i = 0; i < N; ++i) {
cout << (*this)[i];
if (i != N-1) cout << ",";
}
cout << endl;
}
};
struct RollingHash {
static const int base1 = 1007, base2 = 2009;
static const int mod1 = 1000000007, mod2 = 1000000009;
vector<long long> hash1, hash2, power1, power2;
// construct
RollingHash(const string &S) {
int n = (int)S.size();
hash1.assign(n+1, 0), hash2.assign(n+1, 0);
power1.assign(n+1, 1), power2.assign(n+1, 1);
for (int i = 0; i < n; ++i) {
hash1[i+1] = (hash1[i] * base1 + S[i]) % mod1;
hash2[i+1] = (hash2[i] * base2 + S[i]) % mod2;
power1[i+1] = (power1[i] * base1) % mod1;
power2[i+1] = (power2[i] * base2) % mod2;
}
}
// get hash value of S[left:right]
inline long long get(int l, int r) const {
long long res1 = hash1[r] - hash1[l] * power1[r-l] % mod1;
if (res1 < 0) res1 += mod1;
long long res2 = hash2[r] - hash2[l] * power2[r-l] % mod2;
if (res2 < 0) res2 += mod2;
return res1 * mod2 + res2;
}
// get hash value of S
inline long long get() const {
return hash1.back() * mod2 + hash2.back();
}
// get lcp of S[a:] and S[b:]
inline int getLCP(int a, int b) const {
int len = min((int)hash1.size()-a, (int)hash1.size()-b);
int low = 0, high = len;
while (high - low > 1) {
int mid = (low + high) >> 1;
if (get(a, a+mid) != get(b, b+mid)) high = mid;
else low = mid;
}
return low;
}
// get lcp of S[a:] and T[b:]
inline int getLCP(const RollingHash &T, int a, int b) const {
int len = min((int)hash1.size()-a, (int)hash1.size()-b);
int low = 0, high = len;
while (high - low > 1) {
int mid = (low + high) >> 1;
if (get(a, a+mid) != T.get(b, b+mid)) high = mid;
else low = mid;
}
return low;
}
};
vector<bool> isprime;
vector<int> Era(int n) {
isprime.resize(n, true);
vector<int> res;
isprime[0] = false; isprime[1] = false;
for (int i = 2; i < n; ++i) isprime[i] = true;
for (int i = 2; i < n; ++i) {
if (isprime[i]) {
res.push_back(i);
for (int j = i*2; j < n; j += i) isprime[j] = false;
}
}
return res;
}
// x
struct custom_hash {
static uint64_t splitmix64(uint64_t x) {
x += 0x9e3779b97f4a7c15;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
return x ^ (x >> 31);
}
size_t operator() (uint64_t x) const {
static const uint64_t FIXED_RANDOM =
chrono::steady_clock::now().time_since_epoch().count();
return splitmix64(x + FIXED_RANDOM);
}
} rng;
struct Eratos {
vector<int> primes;
vector<bool> isprime;
vector<int> mebius;
vector<int> min_factor;
Eratos(int MAX) : primes(),
isprime(MAX+1, true),
mebius(MAX+1, 1),
min_factor(MAX+1, -1) {
isprime[0] = isprime[1] = false;
min_factor[0] = 0, min_factor[1] = 1;
for (int i = 2; i <= MAX; ++i) {
if (!isprime[i]) continue;
primes.push_back(i);
mebius[i] = -1;
min_factor[i] = i;
for (int j = i*2; j <= MAX; j += i) {
isprime[j] = false;
if ((j / i) % i == 0) mebius[j] = 0;
else mebius[j] = -mebius[j];
if (min_factor[j] == -1) min_factor[j] = i;
}
}
}
// prime factorization
vector<pair<int,int>> prime_factors(int n) {
vector<pair<int,int> > res;
while (n != 1) {
int prime = min_factor[n];
int exp = 0;
while (min_factor[n] == prime) {
++exp;
n /= prime;
}
res.push_back(make_pair(prime, exp));
}
return res;
}
// enumerate divisors
vector<int> divisors(int n) {
vector<int> res({1});
auto pf = prime_factors(n);
for (auto p : pf) {
int n = (int)res.size();
for (int i = 0; i < n; ++i) {
int v = 1;
for (int j = 0; j < p.second; ++j) {
v *= p.first;
res.push_back(res[i] * v);
}
}
}
return res;
}
};
long long GCD(long long x, long long y) {
if (y == 0) return x;
return GCD(y, x % y);
}
// matrix
template<int MOD> struct Matrix {
vector<vector<long long> > val;
Matrix(int n, int m, long long x = 0) : val(n, vector<long long>(m, x)) {}
void init(int n, int m, long long x = 0) {val.assign(n, vector<long long>(m, x));}
size_t size() const {return val.size();}
inline vector<long long>& operator [] (int i) {return val[i];}
};
template<int MOD> ostream& operator << (ostream& s, Matrix<MOD> A) {
s << endl;
for (int i = 0; i < A.size(); ++i) {
for (int j = 0; j < A[i].size(); ++j) {
s << A[i][j] << ", ";
}
s << endl;
}
return s;
}
ll MODD = 0;
template<int MOD> Matrix<MOD> operator * (Matrix<MOD> A, Matrix<MOD> B) {
Matrix<MOD> R(A.size(), B[0].size());
for (int i = 0; i < A.size(); ++i)
for (int j = 0; j < B[0].size(); ++j)
for (int k = 0; k < B.size(); ++k)
R[i][j] = (R[i][j] + A[i][k] * B[k][j] % MODD) % MODD;
return R;
}
template<int MOD> Matrix<MOD> pow(Matrix<MOD> A, long long n) {
Matrix<MOD> R(A.size(), A.size());
for (int i = 0; i < A.size(); ++i) R[i][i] = 1;
while (n > 0) {
if (n & 1) R = R * A;
A = A * A;
n >>= 1;
}
return R;
}
string solve(ll N, ll M, ll K){
string tmp = "";
for (int i = 0; i < N; i++) {
tmp += '0';
}
for (int i = 0; i < M; i++) {
tmp += '1';
}
vector<string> koho;
do {
ll cnt = 0;
for (int i = 1; i < N+M; i++) {
if(tmp[i]!=tmp[i-1])cnt++;
}
if(cnt==K){
koho.push_back(tmp);
// std::cout << tmp << std::endl;
}
}while(next_permutation(tmp.begin(),tmp.end()));
sort(koho.begin(),koho.end());
if(koho.size()==0){
std::cout << -1 << std::endl;
}else{
std::cout << koho[0] << std::endl;
}
return tmp;
}
signed solve2(ll n,ll m,ll k){
ll orin = n;
ll orim = m;
if(k==0){
if(n==0){
for (int i = 0; i < m; i++) {
std::cout << "1";
}
std::cout << std::endl;
return 0;
}else if(m==0){
for (int i = 0; i < n; i++) {
std::cout << 0;
}
std::cout << std::endl;
return 0;
}else{
std::cout << -1 << std::endl;
return 0;
}
}
if(n==0||m==0){
std::cout << -1 << std::endl;
return 0;
}
for (int i = 1; i < k; i++) {
if(i%2==1){
if(n>=1){
n--;
if(n==0){
if(m>1){
m--;
}else{
std::cout << -1 << std::endl;
return 0;
}
}
}else{
std::cout << -1 << std::endl;
return 0;
}
}else{
if(m>=2){
if(n==0){
std::cout << -1 << std::endl;
return 0;
}else{
m--;
}
}else{
std::cout << -1 << std::endl;
return 0;
}
}
}
for (int i = 0; i < n; i++) {
std::cout << 0;
}
for (int i = 0; i < orim-m; i++) {
std::cout << "10";
}
for (int i = 0; i < m; i++) {
std::cout << 1;
}
for (int i = 0; i < orin-n-(orim-m); i++) {
std::cout << 0;
}
std::cout << std::endl;
return 0;
}
signed main(){
ll n,m,k;
std::cin >> n>>m>>k;
// for (int i = 0; i < k; i++) {
// solve(n,m,i);
// solve2(n,m,i);
// std::cout << std::endl;
// std::cout << "---" << std::endl;
// }
solve2(n,m,k);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0