結果
問題 | No.1973 Divisor Sequence |
ユーザー | mkawa2 |
提出日時 | 2023-03-19 00:09:37 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 91 ms / 2,000 ms |
コード長 | 2,104 bytes |
コンパイル時間 | 293 ms |
コンパイル使用メモリ | 82,184 KB |
実行使用メモリ | 76,160 KB |
最終ジャッジ日時 | 2024-09-18 13:38:06 |
合計ジャッジ時間 | 2,107 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 36 ms
52,608 KB |
testcase_01 | AC | 36 ms
52,864 KB |
testcase_02 | AC | 40 ms
59,136 KB |
testcase_03 | AC | 40 ms
58,752 KB |
testcase_04 | AC | 37 ms
58,496 KB |
testcase_05 | AC | 42 ms
58,368 KB |
testcase_06 | AC | 37 ms
53,120 KB |
testcase_07 | AC | 41 ms
58,240 KB |
testcase_08 | AC | 37 ms
58,240 KB |
testcase_09 | AC | 42 ms
58,496 KB |
testcase_10 | AC | 41 ms
59,648 KB |
testcase_11 | AC | 37 ms
53,504 KB |
testcase_12 | AC | 37 ms
58,496 KB |
testcase_13 | AC | 41 ms
59,776 KB |
testcase_14 | AC | 51 ms
63,488 KB |
testcase_15 | AC | 38 ms
58,880 KB |
testcase_16 | AC | 39 ms
58,880 KB |
testcase_17 | AC | 41 ms
60,928 KB |
testcase_18 | AC | 41 ms
61,312 KB |
testcase_19 | AC | 41 ms
60,160 KB |
testcase_20 | AC | 38 ms
58,240 KB |
testcase_21 | AC | 37 ms
57,856 KB |
testcase_22 | AC | 39 ms
59,008 KB |
testcase_23 | AC | 91 ms
76,160 KB |
testcase_24 | AC | 49 ms
65,152 KB |
ソースコード
import sys # sys.setrecursionlimit(200005) int1 = lambda x: int(x)-1 pDB = lambda *x: print(*x, end="\n", file=sys.stderr) p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr) def II(): return int(sys.stdin.readline()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def LI1(): return list(map(int1, sys.stdin.readline().split())) def LLI1(rows_number): return [LI1() for _ in range(rows_number)] def SI(): return sys.stdin.readline().rstrip() dij = [(0, 1), (-1, 0), (0, -1), (1, 0)] # dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)] inf = (1 << 63)-1 # inf = (1 << 31)-1 md = 10**9+7 # md = 998244353 # 行列累乗バージョン def prime_factorization(a): pp, ee = [], [] if a & 1 == 0: pp += [2] ee += [0] while a & 1 == 0: a >>= 1 ee[-1] += 1 p = 3 while p**2 <= a: if a%p == 0: pp += [p] ee += [0] while a%p == 0: a //= p ee[-1] += 1 p += 2 if a > 1: pp += [a] ee += [1] return pp, ee def dot(aa, bb): h = len(aa) w = len(bb[0]) res = [[0]*w for _ in range(h)] for j, col in enumerate(zip(*bb)): for i in range(h): v = 0 # for a, b in zip(row, col): v += a*b # res[i][j] = v for a, b in zip(aa[i], col): v += a*b%md res[i][j] = v%md return res def matpow(mat, e): n = len(mat) res = [[1 if i == j else 0 for j in range(n)] for i in range(n)] while e: if e & 1: res = dot(res, mat) mat = dot(mat, mat) e >>= 1 return res n, m = LI() ans = 1 _, ee = prime_factorization(m) for e in ee: mat = [[0]*(e+1) for _ in range(e+1)] for i in range(e+1): for j in range(e+1): if i+j <= e: mat[i][j] = 1 mat = matpow(mat, n-1) s = 0 for row in mat: for a in row: s += a s %= md ans = ans*s%md print(ans)