結果
| 問題 |
No.1973 Divisor Sequence
|
| コンテスト | |
| ユーザー |
mkawa2
|
| 提出日時 | 2023-03-19 00:09:37 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 91 ms / 2,000 ms |
| コード長 | 2,104 bytes |
| コンパイル時間 | 293 ms |
| コンパイル使用メモリ | 82,184 KB |
| 実行使用メモリ | 76,160 KB |
| 最終ジャッジ日時 | 2024-09-18 13:38:06 |
| 合計ジャッジ時間 | 2,107 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 22 |
ソースコード
import sys
# sys.setrecursionlimit(200005)
int1 = lambda x: int(x)-1
pDB = lambda *x: print(*x, end="\n", file=sys.stderr)
p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr)
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()
dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
inf = (1 << 63)-1
# inf = (1 << 31)-1
md = 10**9+7
# md = 998244353
# 行列累乗バージョン
def prime_factorization(a):
pp, ee = [], []
if a & 1 == 0:
pp += [2]
ee += [0]
while a & 1 == 0:
a >>= 1
ee[-1] += 1
p = 3
while p**2 <= a:
if a%p == 0:
pp += [p]
ee += [0]
while a%p == 0:
a //= p
ee[-1] += 1
p += 2
if a > 1:
pp += [a]
ee += [1]
return pp, ee
def dot(aa, bb):
h = len(aa)
w = len(bb[0])
res = [[0]*w for _ in range(h)]
for j, col in enumerate(zip(*bb)):
for i in range(h):
v = 0
# for a, b in zip(row, col): v += a*b
# res[i][j] = v
for a, b in zip(aa[i], col): v += a*b%md
res[i][j] = v%md
return res
def matpow(mat, e):
n = len(mat)
res = [[1 if i == j else 0 for j in range(n)] for i in range(n)]
while e:
if e & 1: res = dot(res, mat)
mat = dot(mat, mat)
e >>= 1
return res
n, m = LI()
ans = 1
_, ee = prime_factorization(m)
for e in ee:
mat = [[0]*(e+1) for _ in range(e+1)]
for i in range(e+1):
for j in range(e+1):
if i+j <= e: mat[i][j] = 1
mat = matpow(mat, n-1)
s = 0
for row in mat:
for a in row:
s += a
s %= md
ans = ans*s%md
print(ans)
mkawa2