結果
| 問題 |
No.2974 関数の芽
|
| コンテスト | |
| ユーザー |
👑 |
| 提出日時 | 2023-03-20 20:01:33 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 261 ms / 2,000 ms |
| コード長 | 9,569 bytes |
| コンパイル時間 | 11,502 ms |
| コンパイル使用メモリ | 292,256 KB |
| 最終ジャッジ日時 | 2025-02-11 15:41:14 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 24 |
ソースコード
#pragma GCC optimize ( "O3" )
#pragma GCC optimize( "unroll-loops" )
#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
#include<bits/stdc++.h>
using namespace std;
using ll = long long;
#define MAIN main
#define TYPE_OF( VAR ) remove_const<remove_reference<decltype( VAR )>::type >::type
#define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
#define CEXPR( LL , BOUND , VALUE ) constexpr const LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#define CIN_ASSERT( A , MIN , MAX ) CIN( TYPE_OF( MAX ) , A ); ASSERT( A , MIN , MAX )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOR_ITR( ARRAY , ITR , END ) for( auto ITR = ARRAY .begin() , END = ARRAY .end() ; ITR != END ; ITR ++ )
#define QUIT return 0
#define COUT( ANSWER ) cout << ( ANSWER ) << "\n"
// 通常の二分探索その1
// EXPRESSIONがANSWERの狭義単調増加関数の時、EXPRESSION >= TARGETを満たす最小の整数を返す。
// 広義単調増加関数を扱いたい時は等号成立の処理を消す。
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
ll ANSWER; \
{ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
found = true; \
break; \
} else { \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_U = ANSWER; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER + 1; \
} \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
} \
} \
} \
// 通常の二分探索その3
// EXPRESSIONがANSWERの狭義単調減少関数の時、EXPRESSION >= TARGETを満たす最大の整数を返す。
// 広義単調減少関数を扱いたい時は等号成立の処理を消す。
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET ) \
ll ANSWER; \
{ \
ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM; \
ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM; \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH; \
while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH == 0 ){ \
found = true; \
break; \
} else { \
if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH > 0 ){ \
VARIABLE_FOR_BINARY_SEARCH_L = ANSWER; \
} else { \
VARIABLE_FOR_BINARY_SEARCH_U = ANSWER - 1; \
} \
ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
} \
} \
} \
template <typename T , int N>
class BIT
{
private:
T m_fenwick[N + 1];
public:
inline BIT();
BIT( const T ( & a )[N] );
inline void Set( const int& i , const T& n );
inline BIT<T,N>& operator+=( const T ( & a )[N] );
void Add( const int& i , const T& n );
T InitialSegmentSum( const int& i_final );
inline T IntervalSum( const int& i_start , const int& i_final );
};
template <typename T , int N> inline BIT<T,N>::BIT() : m_fenwick() {}
template <typename T , int N>
BIT<T,N>::BIT( const T ( & a )[N] ) : m_fenwick()
{
for( int j = 1 ; j <= N ; j++ ){
T& fenwick_j = m_fenwick[j];
int i = j - 1;
fenwick_j = a[i];
int i_lim = j - ( j & -j );
while( i != i_lim ){
fenwick_j += m_fenwick[i];
i -= ( i & -i );
}
}
}
template <typename T , int N> inline void BIT<T,N>::Set( const int& i , const T& n ) { Add( i , n - IntervalSum( i , i ) ); }
template <typename T , int N> inline BIT<T,N>& BIT<T,N>::operator+=( const T ( & a )[N] ) { for( int i = 0 ; i < N ; i++ ){ Add( i , a[i] ); } return *this; }
template <typename T , int N>
void BIT<T,N>::Add( const int& i , const T& n )
{
int j = i + 1;
while( j <= N ){
m_fenwick[j] += n;
j += ( j & -j );
}
return;
}
template <typename T , int N>
T BIT<T,N>::InitialSegmentSum( const int& i_final )
{
T sum = 0;
int j = ( i_final < N ? i_final : N - 1 ) + 1;
while( j > 0 ){
sum += m_fenwick[j];
j -= j & -j;
}
return sum;
}
template <typename T , int N> inline T BIT<T,N>::IntervalSum( const int& i_start , const int& i_final ) { return InitialSegmentSum( i_final ) - InitialSegmentSum( i_start - 1 ); }
template <typename T , int N>
class IntervalAddBIT
{
private:
// 母関数の微分の負の階差数列((i-1)a_{i-1} - ia_i)の管理
BIT<T,N> m_bit_0;
// 階差数列(a_i - a_{i-1})の管理
BIT<T,N> m_bit_1;
public:
inline IntervalAddBIT();
inline IntervalAddBIT( const T ( & a )[N] );
inline void Set( const int& i , const T& n );
inline IntervalAddBIT<T,N>& operator+=( const T ( & a )[N] );
inline void Add( const int& i , const T& n );
inline void IntervalAdd( const int& i_start , const int& i_final , const T& n );
inline T InitialSegmentSum( const int& i_final );
inline T IntervalSum( const int& i_start , const int& i_final );
};
template <typename T , int N> inline IntervalAddBIT<T,N>::IntervalAddBIT() : m_bit_0() , m_bit_1() {}
template <typename T , int N> inline IntervalAddBIT<T,N>::IntervalAddBIT( const T ( & a )[N] ) : m_bit_0() , m_bit_1() { operator+=( a ); }
template <typename T , int N> inline void IntervalAddBIT<T,N>::Set( const int& i , const T& n ) { Add( i , n - IntervalSum( i , i ) ); }
template <typename T , int N> inline IntervalAddBIT<T,N>& IntervalAddBIT<T,N>::operator+=( const T ( & a )[N] ) { for( int i = 0 ; i < N ; i++ ){ Add( i , a[i] ); } return *this; }
template <typename T , int N> inline void IntervalAddBIT<T,N>::Add( const int& i , const T& n ) { IntervalAdd( i , i , n ); }
template <typename T , int N> inline void IntervalAddBIT<T,N>::IntervalAdd( const int& i_start , const int& i_final , const T& n ) { m_bit_0.Add( i_start , - ( i_start - 1 ) * n ); m_bit_0.Add( i_final + 1 , i_final * n ); m_bit_1.Add( i_start , n ); m_bit_1.Add( i_final + 1 , - n ); }
template <typename T , int N> inline T IntervalAddBIT<T,N>::InitialSegmentSum( const int& i_final ) { return m_bit_0.InitialSegmentSum( i_final ) + i_final * m_bit_1.InitialSegmentSum( i_final ); }
template <typename T , int N> inline T IntervalAddBIT<T,N>::IntervalSum( const int& i_start , const int& i_final ) { return InitialSegmentSum( i_final ) - InitialSegmentSum( i_start - 1 ); }
int MAIN()
{
UNTIE;
CEXPR( int , bound_Q , 100000 );
CIN_ASSERT( Q , 1 , bound_Q );
CEXPR( ll , bound , 1000000000 );
ll KM[bound_Q][2];
ll LN[bound_Q][2];
ll X[bound_Q];
map<ll,int> X_inv{};
X_inv[-bound-1];
X_inv[bound+1];
FOR( q , 0 , Q ){
CIN_ASSERT( Kq , -bound , bound );
CIN_ASSERT( Lq , -bound , bound );
CIN_ASSERT( Mq , -bound , bound );
CIN_ASSERT( Nq , -bound , bound );
CIN_ASSERT( Xq , -bound , bound );
ll ( &KMq )[2] = KM[q];
ll ( &LNq )[2] = LN[q];
KMq[0] = Kq;
LNq[0] = Lq;
KMq[1] = Mq;
LNq[1] = Nq;
X_inv[X[q] = Xq];
}
ll TheAtsuX[bound_Q+2];
int i_max = -1;
FOR_ITR( X_inv , itr , end ){
TheAtsuX[itr->second = ++i_max] = itr->first;
}
IntervalAddBIT<ll,bound_Q+2> FGL[2][2] = {};
IntervalAddBIT<ll,bound_Q+2> FGR[2][2] = {};
FOR( q , 0 , Q ){
ll ( &KMq )[2] = KM[q];
ll ( &LNq )[2] = LN[q];
FOR( j , 0 , 2 ){
ll& KMqj = KMq[j];
ll& LNqj = LNq[j];
IntervalAddBIT<ll,bound_Q+2> ( &FGLj )[2] = FGL[j];
IntervalAddBIT<ll,bound_Q+2> ( &FGRj )[2] = FGR[j];
if( KMqj == 0 ){
if( LNqj > 0 ){
FGLj[0].IntervalAdd( 0 , i_max , LNqj );
FGRj[0].IntervalAdd( 0 , i_max , LNqj );
}
} else if( KMqj > 0 ){
bool found = false;
BS1( i , 0 , i_max , KMqj * TheAtsuX[i] + LNqj , 0 );
if( found ){
FGLj[0].IntervalAdd( i + 1 , i_max , LNqj );
FGLj[1].IntervalAdd( i + 1 , i_max , KMqj );
} else {
FGLj[0].IntervalAdd( i , i_max , LNqj );
FGLj[1].IntervalAdd( i , i_max , KMqj );
}
FGRj[0].IntervalAdd( i , i_max , LNqj );
FGRj[1].IntervalAdd( i , i_max , KMqj );
} else {
bool found = false;
BS3( i , 0 , i_max , KMqj * TheAtsuX[i] + LNqj , 0 );
if( found ){
FGRj[0].IntervalAdd( 0 , i - 1 , LNqj );
FGRj[1].IntervalAdd( 0 , i - 1 , KMqj );
} else {
FGRj[0].IntervalAdd( 0 , i , LNqj );
FGRj[1].IntervalAdd( 0 , i , KMqj );
}
FGLj[0].IntervalAdd( 0 , i , LNqj );
FGLj[1].IntervalAdd( 0 , i , KMqj );
}
}
IntervalAddBIT<ll,bound_Q+2> ( &FL )[2] = FGL[0];
IntervalAddBIT<ll,bound_Q+2> ( &FR )[2] = FGR[0];
IntervalAddBIT<ll,bound_Q+2> ( &GL )[2] = FGL[1];
IntervalAddBIT<ll,bound_Q+2> ( &GR )[2] = FGR[1];
int& i = X_inv[X[q]];
if(
FL[0].IntervalSum( i , i ) == GL[0].IntervalSum( i , i ) &&
FL[1].IntervalSum( i , i ) == GL[1].IntervalSum( i , i ) &&
FR[1].IntervalSum( i , i ) == GR[1].IntervalSum( i , i )
){
COUT( "Yes" );
} else {
COUT( "No" );
}
}
QUIT;
}