結果
問題 | No.2506 Sum of Weighted Powers |
ユーザー | suisen |
提出日時 | 2023-03-22 01:29:32 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 4,477 bytes |
コンパイル時間 | 2,907 ms |
コンパイル使用メモリ | 149,072 KB |
実行使用メモリ | 12,232 KB |
最終ジャッジ日時 | 2024-09-22 23:44:59 |
合計ジャッジ時間 | 6,304 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | WA | - |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | AC | 2 ms
5,376 KB |
testcase_39 | AC | 2 ms
5,376 KB |
testcase_40 | AC | 2 ms
5,376 KB |
testcase_41 | WA | - |
ソースコード
#include <iostream> #include <cassert> #include <cmath> #include <map> long long pow(long long a, long long n, long long p) { long long r = 1; for (;n > 0;n >>= 1, a = a * a % p)if (n % 2 == 1)r = r * a % p; return r; } int cnt(long long a, long long base, long long p) { int ret = 0; while (a != 1) { a = pow(a, base, p); ++ret; } return ret; } long long inv(long long a, long long p) { a %= p; long long u = 1, v = 0; long long b = p; while (b > 0) { long long q = a / b; a %= b; u -= v * q % p; u = (u % p + p) % p; { u ^= v;v ^= u;u ^= v; a ^= b;b ^= a;a ^= b; } } return u < 0 ? u + p : u; } long long gcd(long long a, long long b) { return a == 0 ? b : gcd(b % a, a); } long long peth_root(long long a, long long p, int e, long long mod) { long long q = mod - 1; int s = 0; while (q % p == 0) { q /= p; ++s; } long long pe = pow(p, e, mod); long long ans = pow(a, ((pe - 1) * inv(q, pe) % pe * q + 1) / pe, mod); long long c = 2; while (pow(c, (mod - 1) / p, mod) == 1) ++c; c = pow(c, q, mod); std::map<long long, int> map; long long add = 1; int v = (int) std::sqrt((double) (s - e) * p) + 1; long long mul = pow(c, v * pow(p, s - 1, mod - 1) % (mod - 1), mod); for (int i = 0;i <= v;++i) { map[add] = i; add = add * mul % mod; } mul = inv(pow(c, pow(p, s - 1, mod - 1), mod), mod); for (int i = e;i < s;++i) { long long err = inv(pow(ans, pe, mod), mod) * a % mod; long long target = pow(err, pow(p, s - 1 - i, mod - 1), mod); for (int j = 0; j <= v; ++j) { if (map.find(target) != map.end()) { int x = map[target]; ans = ans * pow(c, (j + v * x) * pow(p, i - e, mod - 1) % (mod - 1), mod) % mod; break; } target = target * mul % mod; assert(j != v); } } return ans; } long long kth_root(long long a, long long k, long long p) { if (k > 0 && a == 0)return 0; k %= p - 1; long long g = gcd(k, p - 1); if (pow(a, (p - 1) / g, p) != 1) return -1; a = pow(a, inv(k / g, (p - 1) / g), p); for (long long div = 2;div * div <= g;++div) { int sz = 0; while (g % div == 0) { g /= div; ++sz; } if (sz > 0) { long long b = peth_root(a, div, sz, p); a = b; } } if (g > 1) a = peth_root(a, g, 1, p); return a; } #include <atcoder/modint> using mint = atcoder::modint998244353; namespace atcoder { std::istream& operator>>(std::istream& in, mint &a) { long long e; in >> e; a = e; return in; } std::ostream& operator<<(std::ostream& out, const mint &a) { out << a.val(); return out; } } // namespace atcoder #include <atcoder/convolution> mint solve(const int n, const mint x, const std::vector<mint> &a, const std::vector<mint> &b, const std::vector<mint> &c) { if (x == 0) { mint ans = 0; for (int i = 0; i <= n; ++i) { ans += a[i] * b[i] * c[0]; } for (int i = 1; i <= n; ++i) { ans += a[i] * b[0] * c[i]; } return ans; } int cbrt_x_ = kth_root(x.val(), 3, mint::mod()); if (cbrt_x_ == -1) { return 0; } const mint cbrt_x = cbrt_x_, inv_cbrt_x = cbrt_x.inv(); auto t = [&](long long k) { return k * k * k; }; std::vector<mint> f(n + 1), g(n + 1); for (int i = 0; i <= n; ++i) { const mint pow_inv_x = inv_cbrt_x.pow(t(i)); f[i] = b[i] * pow_inv_x; g[i] = c[i] * pow_inv_x; } const std::vector<mint> h = atcoder::convolution(f, g); mint ans = 0; for (int i = 0; i <= n; ++i) { const mint pow_x = cbrt_x.pow(t(i)); ans += a[i] * pow_x * h[i]; } return ans; } int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); int n, x; std::cin >> n >> x; std::vector<mint> a(n + 1), b(n + 1), c(n + 1); for (int i = 0, v; i <= n; ++i) std::cin >> v, a[i] = v; for (int i = 0, v; i <= n; ++i) std::cin >> v, b[i] = v; for (int i = 0, v; i <= n; ++i) std::cin >> v, c[i] = v; std::cout << solve(n, x, a, b, c).val() << std::endl; return 0; }