結果
| 問題 |
No.1145 Sums of Powers
|
| ユーザー |
|
| 提出日時 | 2023-03-23 17:20:52 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 559 ms / 2,000 ms |
| コード長 | 20,584 bytes |
| コンパイル時間 | 2,313 ms |
| コンパイル使用メモリ | 219,348 KB |
| 最終ジャッジ日時 | 2025-02-11 16:29:13 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 6 |
ソースコード
#line 1 "combined.cpp"
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
template <class T> inline bool chmax(T &a, T b) {
if(a < b) {
a = b;
return 1;
}
return 0;
}
template <class T> inline bool chmin(T &a, T b) {
if(a > b) {
a = b;
return 1;
}
return 0;
}
#ifdef DEBUG
template <class T, class U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << '(' << p.first << ',' << p.second << ')';
return os;
}
template <class T> ostream &operator<<(ostream &os, const vector<T> &v) {
os << '{';
for(int i = 0; i < (int)v.size(); i++) {
if(i) { os << ','; }
os << v[i];
}
os << '}';
return os;
}
void debugg() { cerr << endl; }
template <class T, class... Args>
void debugg(const T &x, const Args &... args) {
cerr << " " << x;
debugg(args...);
}
#define debug(...) \
cerr << __LINE__ << " [" << #__VA_ARGS__ << "]: ", debugg(__VA_ARGS__)
#define dump(x) cerr << __LINE__ << " " << #x << " = " << (x) << endl
#else
#define debug(...) (void(0))
#define dump(x) (void(0))
#endif
struct Setup {
Setup() {
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
}
} __Setup;
using ll = long long;
#define OVERLOAD3(_1, _2, _3, name, ...) name
#define ALL(v) (v).begin(), (v).end()
#define RALL(v) (v).rbegin(), (v).rend()
#define REP1(i, n) for(int i = 0; i < int(n); i++)
#define REP2(i, a, b) for(int i = (a); i < int(b); i++)
#define REP(...) OVERLOAD3(__VA_ARGS__, REP2, REP1)(__VA_ARGS__)
#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())
#define REVERSE(v) reverse(ALL(v))
#define SZ(v) ((int)(v).size())
const int INF = 1 << 30;
const ll LLINF = 1LL << 60;
constexpr int MOD = 1000000007;
constexpr int MOD2 = 998244353;
const int dx[4] = {1, 0, -1, 0};
const int dy[4] = {0, 1, 0, -1};
void Case(int i) { cout << "Case #" << i << ": "; }
int popcount(int x) { return __builtin_popcount(x); }
ll popcount(ll x) { return __builtin_popcountll(x); }
#pragma endregion Macros
#line 1 "math/fft/number-theoretic-transform-friendly-mod-int.hpp"
/**
* @brief Number Theoretic Transform Friendly ModInt
*/
template< typename Mint >
struct NumberTheoreticTransformFriendlyModInt {
static vector< Mint > roots, iroots, rate3, irate3;
static int max_base;
NumberTheoreticTransformFriendlyModInt() = default;
static void init() {
if(roots.empty()) {
const unsigned mod = Mint::get_mod();
assert(mod >= 3 && mod % 2 == 1);
auto tmp = mod - 1;
max_base = 0;
while(tmp % 2 == 0) tmp >>= 1, max_base++;
Mint root = 2;
while(root.pow((mod - 1) >> 1) == 1) {
root += 1;
}
assert(root.pow(mod - 1) == 1);
roots.resize(max_base + 1);
iroots.resize(max_base + 1);
rate3.resize(max_base + 1);
irate3.resize(max_base + 1);
roots[max_base] = root.pow((mod - 1) >> max_base);
iroots[max_base] = Mint(1) / roots[max_base];
for(int i = max_base - 1; i >= 0; i--) {
roots[i] = roots[i + 1] * roots[i + 1];
iroots[i] = iroots[i + 1] * iroots[i + 1];
}
{
Mint prod = 1, iprod = 1;
for(int i = 0; i <= max_base - 3; i++) {
rate3[i] = roots[i + 3] * prod;
irate3[i] = iroots[i + 3] * iprod;
prod *= iroots[i + 3];
iprod *= roots[i + 3];
}
}
}
}
static void ntt(vector< Mint > &a) {
init();
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
int h = __builtin_ctz(n);
assert(h <= max_base);
int len = 0;
Mint imag = roots[2];
if(h & 1) {
int p = 1 << (h - 1);
Mint rot = 1;
for(int i = 0; i < p; i++) {
auto r = a[i + p];
a[i + p] = a[i] - r;
a[i] += r;
}
len++;
}
for(; len + 1 < h; len += 2) {
int p = 1 << (h - len - 2);
{ // s = 0
for(int i = 0; i < p; i++) {
auto a0 = a[i];
auto a1 = a[i + p];
auto a2 = a[i + 2 * p];
auto a3 = a[i + 3 * p];
auto a1na3imag = (a1 - a3) * imag;
auto a0a2 = a0 + a2;
auto a1a3 = a1 + a3;
auto a0na2 = a0 - a2;
a[i] = a0a2 + a1a3;
a[i + 1 * p] = a0a2 - a1a3;
a[i + 2 * p] = a0na2 + a1na3imag;
a[i + 3 * p] = a0na2 - a1na3imag;
}
}
Mint rot = rate3[0];
for(int s = 1; s < (1 << len); s++) {
int offset = s << (h - len);
Mint rot2 = rot * rot;
Mint rot3 = rot2 * rot;
for(int i = 0; i < p; i++) {
auto a0 = a[i + offset];
auto a1 = a[i + offset + p] * rot;
auto a2 = a[i + offset + 2 * p] * rot2;
auto a3 = a[i + offset + 3 * p] * rot3;
auto a1na3imag = (a1 - a3) * imag;
auto a0a2 = a0 + a2;
auto a1a3 = a1 + a3;
auto a0na2 = a0 - a2;
a[i + offset] = a0a2 + a1a3;
a[i + offset + 1 * p] = a0a2 - a1a3;
a[i + offset + 2 * p] = a0na2 + a1na3imag;
a[i + offset + 3 * p] = a0na2 - a1na3imag;
}
rot *= rate3[__builtin_ctz(~s)];
}
}
}
static void intt(vector< Mint > &a, bool f = true) {
init();
const int n = (int) a.size();
assert((n & (n - 1)) == 0);
int h = __builtin_ctz(n);
assert(h <= max_base);
int len = h;
Mint iimag = iroots[2];
for(; len > 1; len -= 2) {
int p = 1 << (h - len);
{ // s = 0
for(int i = 0; i < p; i++) {
auto a0 = a[i];
auto a1 = a[i + 1 * p];
auto a2 = a[i + 2 * p];
auto a3 = a[i + 3 * p];
auto a2na3iimag = (a2 - a3) * iimag;
auto a0na1 = a0 - a1;
auto a0a1 = a0 + a1;
auto a2a3 = a2 + a3;
a[i] = a0a1 + a2a3;
a[i + 1 * p] = (a0na1 + a2na3iimag);
a[i + 2 * p] = (a0a1 - a2a3);
a[i + 3 * p] = (a0na1 - a2na3iimag);
}
}
Mint irot = irate3[0];
for(int s = 1; s < (1 << (len - 2)); s++) {
int offset = s << (h - len + 2);
Mint irot2 = irot * irot;
Mint irot3 = irot2 * irot;
for(int i = 0; i < p; i++) {
auto a0 = a[i + offset];
auto a1 = a[i + offset + 1 * p];
auto a2 = a[i + offset + 2 * p];
auto a3 = a[i + offset + 3 * p];
auto a2na3iimag = (a2 - a3) * iimag;
auto a0na1 = a0 - a1;
auto a0a1 = a0 + a1;
auto a2a3 = a2 + a3;
a[i + offset] = a0a1 + a2a3;
a[i + offset + 1 * p] = (a0na1 + a2na3iimag) * irot;
a[i + offset + 2 * p] = (a0a1 - a2a3) * irot2;
a[i + offset + 3 * p] = (a0na1 - a2na3iimag) * irot3;
}
irot *= irate3[__builtin_ctz(~s)];
}
}
if(len >= 1) {
int p = 1 << (h - 1);
for(int i = 0; i < p; i++) {
auto ajp = a[i] - a[i + p];
a[i] += a[i + p];
a[i + p] = ajp;
}
}
if(f) {
Mint inv_sz = Mint(1) / n;
for(int i = 0; i < n; i++) a[i] *= inv_sz;
}
}
static vector< Mint > multiply(vector< Mint > a, vector< Mint > b) {
int need = a.size() + b.size() - 1;
int nbase = 1;
while((1 << nbase) < need) nbase++;
int sz = 1 << nbase;
a.resize(sz, 0);
b.resize(sz, 0);
ntt(a);
ntt(b);
Mint inv_sz = Mint(1) / sz;
for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
intt(a, false);
a.resize(need);
return a;
}
};
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::roots = vector< Mint >();
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::iroots = vector< Mint >();
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::rate3 = vector< Mint >();
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::irate3 = vector< Mint >();
template< typename Mint >
int NumberTheoreticTransformFriendlyModInt< Mint >::max_base = 0;
#line 2 "math/fps/formal-power-series-friendly-ntt.hpp"
/**
* @brief Formal Power Series Friendly NTT(NTTmod用形式的冪級数)
* @docs docs/formal-power-series-friendly-ntt.md
*/
template< typename T >
struct FormalPowerSeriesFriendlyNTT : vector< T > {
using vector< T >::vector;
using P = FormalPowerSeriesFriendlyNTT;
using NTT = NumberTheoreticTransformFriendlyModInt< T >;
P pre(int deg) const {
return P(begin(*this), begin(*this) + min((int) this->size(), deg));
}
P rev(int deg = -1) const {
P ret(*this);
if(deg != -1) ret.resize(deg, T(0));
reverse(begin(ret), end(ret));
return ret;
}
void shrink() {
while(this->size() && this->back() == T(0)) this->pop_back();
}
P operator+(const P &r) const { return P(*this) += r; }
P operator+(const T &v) const { return P(*this) += v; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator-(const T &v) const { return P(*this) -= v; }
P operator*(const P &r) const { return P(*this) *= r; }
P operator*(const T &v) const { return P(*this) *= v; }
P operator/(const P &r) const { return P(*this) /= r; }
P operator%(const P &r) const { return P(*this) %= r; }
P &operator+=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < (int) r.size(); i++) (*this)[i] += r[i];
return *this;
}
P &operator-=(const P &r) {
if(r.size() > this->size()) this->resize(r.size());
for(int i = 0; i < (int) r.size(); i++) (*this)[i] -= r[i];
return *this;
}
// https://judge.yosupo.jp/problem/convolution_mod
P &operator*=(const P &r) {
if(this->empty() || r.empty()) {
this->clear();
return *this;
}
auto ret = NTT::multiply(*this, r);
return *this = {begin(ret), end(ret)};
}
P &operator/=(const P &r) {
if(this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
}
P &operator%=(const P &r) {
*this -= *this / r * r;
shrink();
return *this;
}
// https://judge.yosupo.jp/problem/division_of_polynomials
pair< P, P > div_mod(const P &r) {
P q = *this / r;
P x = *this - q * r;
x.shrink();
return make_pair(q, x);
}
P operator-() const {
P ret(this->size());
for(int i = 0; i < (int) this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
P &operator+=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
P &operator-=(const T &r) {
if(this->empty()) this->resize(1);
(*this)[0] -= r;
return *this;
}
P &operator*=(const T &v) {
for(int i = 0; i < (int) this->size(); i++) (*this)[i] *= v;
return *this;
}
P dot(P r) const {
P ret(min(this->size(), r.size()));
for(int i = 0; i < (int) ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
P operator>>(int sz) const {
if((int) this->size() <= sz) return {};
P ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
P operator<<(int sz) const {
P ret(*this);
ret.insert(ret.begin(), sz, T(0));
return ret;
}
T operator()(T x) const {
T r = 0, w = 1;
for(auto &v : *this) {
r += w * v;
w *= x;
}
return r;
}
P diff() const {
const int n = (int) this->size();
P ret(max(0, n - 1));
for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
return ret;
}
P integral() const {
const int n = (int) this->size();
P ret(n + 1);
ret[0] = T(0);
for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
return ret;
}
// https://judge.yosupo.jp/problem/inv_of_formal_power_series
// F(0) must not be 0
P inv(int deg = -1) const {
assert(((*this)[0]) != T(0));
const int n = (int) this->size();
if(deg == -1) deg = n;
P res(deg);
res[0] = {T(1) / (*this)[0]};
for(int d = 1; d < deg; d <<= 1) {
P f(2 * d), g(2 * d);
for(int j = 0; j < min(n, 2 * d); j++) f[j] = (*this)[j];
for(int j = 0; j < d; j++) g[j] = res[j];
NTT::ntt(f);
NTT::ntt(g);
f = f.dot(g);
NTT::intt(f);
for(int j = 0; j < d; j++) f[j] = 0;
NTT::ntt(f);
for(int j = 0; j < 2 * d; j++) f[j] *= g[j];
NTT::intt(f);
for(int j = d; j < min(2 * d, deg); j++) res[j] = -f[j];
}
return res;
}
// https://judge.yosupo.jp/problem/log_of_formal_power_series
// F(0) must be 1
P log(int deg = -1) const {
assert((*this)[0] == T(1));
const int n = (int) this->size();
if(deg == -1) deg = n;
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
// https://judge.yosupo.jp/problem/sqrt_of_formal_power_series
P sqrt(int deg = -1, const function< T(T) > &get_sqrt = [](T) { return T(1); }) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
if((*this)[0] == T(0)) {
for(int i = 1; i < n; i++) {
if((*this)[i] != T(0)) {
if(i & 1) return {};
if(deg - i / 2 <= 0) break;
auto ret = (*this >> i).sqrt(deg - i / 2, get_sqrt);
if(ret.empty()) return {};
ret = ret << (i / 2);
if((int) ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return P(deg, 0);
}
auto sqr = T(get_sqrt((*this)[0]));
if(sqr * sqr != (*this)[0]) return {};
P ret{sqr};
T inv2 = T(1) / T(2);
for(int i = 1; i < deg; i <<= 1) {
ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
}
return ret.pre(deg);
}
P sqrt(const function< T(T) > &get_sqrt, int deg = -1) const {
return sqrt(deg, get_sqrt);
}
// https://judge.yosupo.jp/problem/exp_of_formal_power_series
// F(0) must be 0
P exp(int deg = -1) const {
if(deg == -1) deg = this->size();
assert((*this)[0] == T(0));
P inv;
inv.reserve(deg + 1);
inv.push_back(T(0));
inv.push_back(T(1));
auto inplace_integral = [&](P &F) -> void {
const int n = (int) F.size();
auto mod = T::get_mod();
while((int) inv.size() <= n) {
int i = inv.size();
inv.push_back((-inv[mod % i]) * (mod / i));
}
F.insert(begin(F), T(0));
for(int i = 1; i <= n; i++) F[i] *= inv[i];
};
auto inplace_diff = [](P &F) -> void {
if(F.empty()) return;
F.erase(begin(F));
T coeff = 1, one = 1;
for(int i = 0; i < (int) F.size(); i++) {
F[i] *= coeff;
coeff += one;
}
};
P b{1, 1 < (int) this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
for(int m = 2; m < deg; m *= 2) {
auto y = b;
y.resize(2 * m);
NTT::ntt(y);
z1 = z2;
P z(m);
for(int i = 0; i < m; ++i) z[i] = y[i] * z1[i];
NTT::intt(z);
fill(begin(z), begin(z) + m / 2, T(0));
NTT::ntt(z);
for(int i = 0; i < m; ++i) z[i] *= -z1[i];
NTT::intt(z);
c.insert(end(c), begin(z) + m / 2, end(z));
z2 = c;
z2.resize(2 * m);
NTT::ntt(z2);
P x(begin(*this), begin(*this) + min< int >(this->size(), m));
inplace_diff(x);
x.push_back(T(0));
NTT::ntt(x);
for(int i = 0; i < m; ++i) x[i] *= y[i];
NTT::intt(x);
x -= b.diff();
x.resize(2 * m);
for(int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = T(0);
NTT::ntt(x);
for(int i = 0; i < 2 * m; ++i) x[i] *= z2[i];
NTT::intt(x);
x.pop_back();
inplace_integral(x);
for(int i = m; i < min< int >(this->size(), 2 * m); ++i) x[i] += (*this)[i];
fill(begin(x), begin(x) + m, T(0));
NTT::ntt(x);
for(int i = 0; i < 2 * m; ++i) x[i] *= y[i];
NTT::intt(x);
b.insert(end(b), begin(x) + m, end(x));
}
return P{begin(b), begin(b) + deg};
}
// https://judge.yosupo.jp/problem/pow_of_formal_power_series
P pow(int64_t k, int deg = -1) const {
const int n = (int) this->size();
if(deg == -1) deg = n;
for(int i = 0; i < n; i++) {
if((*this)[i] != T(0)) {
T rev = T(1) / (*this)[i];
P ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k));
if(i * k > deg) return P(deg, T(0));
ret = (ret << (i * k)).pre(deg);
if((int) ret.size() < deg) ret.resize(deg, T(0));
return ret;
}
}
return *this;
}
P mod_pow(int64_t k, P g) const {
P modinv = g.rev().inv();
auto get_div = [&](P base) {
if(base.size() < g.size()) {
base.clear();
return base;
}
int n = base.size() - g.size() + 1;
return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n);
};
P x(*this), ret{1};
while(k > 0) {
if(k & 1) {
ret *= x;
ret -= get_div(ret) * g;
ret.shrink();
}
x *= x;
x -= get_div(x) * g;
x.shrink();
k >>= 1;
}
return ret;
}
// https://judge.yosupo.jp/problem/polynomial_taylor_shift
P taylor_shift(T c) const {
int n = (int) this->size();
vector< T > fact(n), rfact(n);
fact[0] = rfact[0] = T(1);
for(int i = 1; i < n; i++) fact[i] = fact[i - 1] * T(i);
rfact[n - 1] = T(1) / fact[n - 1];
for(int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * T(i);
P p(*this);
for(int i = 0; i < n; i++) p[i] *= fact[i];
p = p.rev();
P bs(n, T(1));
for(int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1];
p = (p * bs).pre(n);
p = p.rev();
for(int i = 0; i < n; i++) p[i] *= rfact[i];
return p;
}
};
#line 2 "/Users/siro53/kyo-pro/compro_library/modint/modint.hpp"
#line 6 "/Users/siro53/kyo-pro/compro_library/modint/modint.hpp"
template <int mod> class ModInt {
public:
ModInt() : x(0) {}
ModInt(long long y)
: x(y >= 0 ? y % umod() : (umod() - (-y) % umod()) % umod()) {}
unsigned int val() const { return x; }
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= umod()) x -= umod();
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += umod() - p.x) >= umod()) x -= umod();
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (unsigned int)(1ULL * x * p.x % umod());
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inv();
return *this;
}
ModInt operator-() const { return ModInt(-(long long)x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inv() const {
long long a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
std::swap(a -= t * b, b);
std::swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(unsigned long long n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend std::ostream &operator<<(std::ostream &os, const ModInt &p) {
return os << p.x;
}
friend std::istream &operator>>(std::istream &is, ModInt &a) {
long long t;
is >> t;
a = ModInt<mod>(t);
return (is);
}
static constexpr int get_mod() { return mod; }
private:
unsigned int x;
static constexpr unsigned int umod() { return mod; }
};
#line 630 "combined.cpp"
using mint = ModInt<MOD2>;
using FPS = FormalPowerSeriesFriendlyNTT<mint>;
int main() {
int N, M;
cin >> N >> M;
queue<pair<FPS, FPS>> que;
REP(i, N) {
mint a;
cin >> a;
que.emplace(FPS({1}), FPS({1, -a}));
}
while(SZ(que) >= 2) {
auto [g1, f1] = que.front();
que.pop();
auto [g2, f2] = que.front();
que.pop();
que.emplace(f2 * g1 + f1 * g2, f1 * f2);
}
auto [g, f] = que.front();
g.resize(M+1);
f.resize(M+1);
FPS res = g * f.inv();
debug(SZ(res));
REP(i, 1, M+1) {
cout << (i < SZ(res) ? res[i] : 0) << " \n"[i == M];
}
}