結果

問題 No.1145 Sums of Powers
ユーザー siro53siro53
提出日時 2023-03-23 17:20:52
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 562 ms / 2,000 ms
コード長 20,584 bytes
コンパイル時間 2,921 ms
コンパイル使用メモリ 227,260 KB
実行使用メモリ 14,720 KB
最終ジャッジ日時 2024-09-18 15:31:17
合計ジャッジ時間 4,773 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 4 ms
6,940 KB
testcase_03 AC 562 ms
14,720 KB
testcase_04 AC 544 ms
14,720 KB
testcase_05 AC 545 ms
14,720 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "combined.cpp"
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
template <class T> inline bool chmax(T &a, T b) {
    if(a < b) {
        a = b;
        return 1;
    }
    return 0;
}
template <class T> inline bool chmin(T &a, T b) {
    if(a > b) {
        a = b;
        return 1;
    }
    return 0;
}
#ifdef DEBUG
template <class T, class U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
    os << '(' << p.first << ',' << p.second << ')';
    return os;
}
template <class T> ostream &operator<<(ostream &os, const vector<T> &v) {
    os << '{';
    for(int i = 0; i < (int)v.size(); i++) {
        if(i) { os << ','; }
        os << v[i];
    }
    os << '}';
    return os;
}
void debugg() { cerr << endl; }
template <class T, class... Args>
void debugg(const T &x, const Args &... args) {
    cerr << " " << x;
    debugg(args...);
}
#define debug(...)                                                             \
    cerr << __LINE__ << " [" << #__VA_ARGS__ << "]: ", debugg(__VA_ARGS__)
#define dump(x) cerr << __LINE__ << " " << #x << " = " << (x) << endl
#else
#define debug(...) (void(0))
#define dump(x) (void(0))
#endif

struct Setup {
    Setup() {
        cin.tie(0);
        ios::sync_with_stdio(false);
        cout << fixed << setprecision(15);
    }
} __Setup;

using ll = long long;
#define OVERLOAD3(_1, _2, _3, name, ...) name
#define ALL(v) (v).begin(), (v).end()
#define RALL(v) (v).rbegin(), (v).rend()
#define REP1(i, n) for(int i = 0; i < int(n); i++)
#define REP2(i, a, b) for(int i = (a); i < int(b); i++)
#define REP(...) OVERLOAD3(__VA_ARGS__, REP2, REP1)(__VA_ARGS__)
#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())
#define REVERSE(v) reverse(ALL(v))
#define SZ(v) ((int)(v).size())
const int INF = 1 << 30;
const ll LLINF = 1LL << 60;
constexpr int MOD = 1000000007;
constexpr int MOD2 = 998244353;
const int dx[4] = {1, 0, -1, 0};
const int dy[4] = {0, 1, 0, -1};

void Case(int i) { cout << "Case #" << i << ": "; }
int popcount(int x) { return __builtin_popcount(x); }
ll popcount(ll x) { return __builtin_popcountll(x); }
#pragma endregion Macros

#line 1 "math/fft/number-theoretic-transform-friendly-mod-int.hpp"
/**
 * @brief Number Theoretic Transform Friendly ModInt
 */
template< typename Mint >
struct NumberTheoreticTransformFriendlyModInt {

  static vector< Mint > roots, iroots, rate3, irate3;
  static int max_base;

  NumberTheoreticTransformFriendlyModInt() = default;

  static void init() {
    if(roots.empty()) {
      const unsigned mod = Mint::get_mod();
      assert(mod >= 3 && mod % 2 == 1);
      auto tmp = mod - 1;
      max_base = 0;
      while(tmp % 2 == 0) tmp >>= 1, max_base++;
      Mint root = 2;
      while(root.pow((mod - 1) >> 1) == 1) {
        root += 1;
      }
      assert(root.pow(mod - 1) == 1);

      roots.resize(max_base + 1);
      iroots.resize(max_base + 1);
      rate3.resize(max_base + 1);
      irate3.resize(max_base + 1);

      roots[max_base] = root.pow((mod - 1) >> max_base);
      iroots[max_base] = Mint(1) / roots[max_base];
      for(int i = max_base - 1; i >= 0; i--) {
        roots[i] = roots[i + 1] * roots[i + 1];
        iroots[i] = iroots[i + 1] * iroots[i + 1];
      }
      {
        Mint prod = 1, iprod = 1;
        for(int i = 0; i <= max_base - 3; i++) {
          rate3[i] = roots[i + 3] * prod;
          irate3[i] = iroots[i + 3] * iprod;
          prod *= iroots[i + 3];
          iprod *= roots[i + 3];
        }
      }
    }
  }

  static void ntt(vector< Mint > &a) {
    init();
    const int n = (int) a.size();
    assert((n & (n - 1)) == 0);
    int h = __builtin_ctz(n);
    assert(h <= max_base);
    int len = 0;
    Mint imag = roots[2];
    if(h & 1) {
      int p = 1 << (h - 1);
      Mint rot = 1;
      for(int i = 0; i < p; i++) {
        auto r = a[i + p];
        a[i + p] = a[i] - r;
        a[i] += r;
      }
      len++;
    }
    for(; len + 1 < h; len += 2) {
      int p = 1 << (h - len - 2);
      { // s = 0
        for(int i = 0; i < p; i++) {
          auto a0 = a[i];
          auto a1 = a[i + p];
          auto a2 = a[i + 2 * p];
          auto a3 = a[i + 3 * p];
          auto a1na3imag = (a1 - a3) * imag;
          auto a0a2 = a0 + a2;
          auto a1a3 = a1 + a3;
          auto a0na2 = a0 - a2;
          a[i] = a0a2 + a1a3;
          a[i + 1 * p] = a0a2 - a1a3;
          a[i + 2 * p] = a0na2 + a1na3imag;
          a[i + 3 * p] = a0na2 - a1na3imag;
        }
      }
      Mint rot = rate3[0];
      for(int s = 1; s < (1 << len); s++) {
        int offset = s << (h - len);
        Mint rot2 = rot * rot;
        Mint rot3 = rot2 * rot;
        for(int i = 0; i < p; i++) {
          auto a0 = a[i + offset];
          auto a1 = a[i + offset + p] * rot;
          auto a2 = a[i + offset + 2 * p] * rot2;
          auto a3 = a[i + offset + 3 * p] * rot3;
          auto a1na3imag = (a1 - a3) * imag;
          auto a0a2 = a0 + a2;
          auto a1a3 = a1 + a3;
          auto a0na2 = a0 - a2;
          a[i + offset] = a0a2 + a1a3;
          a[i + offset + 1 * p] = a0a2 - a1a3;
          a[i + offset + 2 * p] = a0na2 + a1na3imag;
          a[i + offset + 3 * p] = a0na2 - a1na3imag;
        }
        rot *= rate3[__builtin_ctz(~s)];
      }
    }
  }

  static void intt(vector< Mint > &a, bool f = true) {
    init();
    const int n = (int) a.size();
    assert((n & (n - 1)) == 0);
    int h = __builtin_ctz(n);
    assert(h <= max_base);
    int len = h;
    Mint iimag = iroots[2];
    for(; len > 1; len -= 2) {
      int p = 1 << (h - len);
      { // s = 0
        for(int i = 0; i < p; i++) {
          auto a0 = a[i];
          auto a1 = a[i + 1 * p];
          auto a2 = a[i + 2 * p];
          auto a3 = a[i + 3 * p];
          auto a2na3iimag = (a2 - a3) * iimag;
          auto a0na1 = a0 - a1;
          auto a0a1 = a0 + a1;
          auto a2a3 = a2 + a3;
          a[i] = a0a1 + a2a3;
          a[i + 1 * p] = (a0na1 + a2na3iimag);
          a[i + 2 * p] = (a0a1 - a2a3);
          a[i + 3 * p] = (a0na1 - a2na3iimag);
        }
      }
      Mint irot = irate3[0];
      for(int s = 1; s < (1 << (len - 2)); s++) {
        int offset = s << (h - len + 2);
        Mint irot2 = irot * irot;
        Mint irot3 = irot2 * irot;
        for(int i = 0; i < p; i++) {
          auto a0 = a[i + offset];
          auto a1 = a[i + offset + 1 * p];
          auto a2 = a[i + offset + 2 * p];
          auto a3 = a[i + offset + 3 * p];
          auto a2na3iimag = (a2 - a3) * iimag;
          auto a0na1 = a0 - a1;
          auto a0a1 = a0 + a1;
          auto a2a3 = a2 + a3;
          a[i + offset] = a0a1 + a2a3;
          a[i + offset + 1 * p] = (a0na1 + a2na3iimag) * irot;
          a[i + offset + 2 * p] = (a0a1 - a2a3) * irot2;
          a[i + offset + 3 * p] = (a0na1 - a2na3iimag) * irot3;
        }
        irot *= irate3[__builtin_ctz(~s)];
      }
    }
    if(len >= 1) {
      int p = 1 << (h - 1);
      for(int i = 0; i < p; i++) {
        auto ajp = a[i] - a[i + p];
        a[i] += a[i + p];
        a[i + p] = ajp;
      }
    }
    if(f) {
      Mint inv_sz = Mint(1) / n;
      for(int i = 0; i < n; i++) a[i] *= inv_sz;
    }
  }

  static vector< Mint > multiply(vector< Mint > a, vector< Mint > b) {
    int need = a.size() + b.size() - 1;
    int nbase = 1;
    while((1 << nbase) < need) nbase++;
    int sz = 1 << nbase;
    a.resize(sz, 0);
    b.resize(sz, 0);
    ntt(a);
    ntt(b);
    Mint inv_sz = Mint(1) / sz;
    for(int i = 0; i < sz; i++) a[i] *= b[i] * inv_sz;
    intt(a, false);
    a.resize(need);
    return a;
  }
};

template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::roots = vector< Mint >();
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::iroots = vector< Mint >();
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::rate3 = vector< Mint >();
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::irate3 = vector< Mint >();
template< typename Mint >
int NumberTheoreticTransformFriendlyModInt< Mint >::max_base = 0;
#line 2 "math/fps/formal-power-series-friendly-ntt.hpp"

/**
 * @brief Formal Power Series Friendly NTT(NTTmod用形式的冪級数)
 * @docs docs/formal-power-series-friendly-ntt.md
 */
template< typename T >
struct FormalPowerSeriesFriendlyNTT : vector< T > {
  using vector< T >::vector;
  using P = FormalPowerSeriesFriendlyNTT;
  using NTT = NumberTheoreticTransformFriendlyModInt< T >;

  P pre(int deg) const {
    return P(begin(*this), begin(*this) + min((int) this->size(), deg));
  }

  P rev(int deg = -1) const {
    P ret(*this);
    if(deg != -1) ret.resize(deg, T(0));
    reverse(begin(ret), end(ret));
    return ret;
  }

  void shrink() {
    while(this->size() && this->back() == T(0)) this->pop_back();
  }

  P operator+(const P &r) const { return P(*this) += r; }

  P operator+(const T &v) const { return P(*this) += v; }

  P operator-(const P &r) const { return P(*this) -= r; }

  P operator-(const T &v) const { return P(*this) -= v; }

  P operator*(const P &r) const { return P(*this) *= r; }

  P operator*(const T &v) const { return P(*this) *= v; }

  P operator/(const P &r) const { return P(*this) /= r; }

  P operator%(const P &r) const { return P(*this) %= r; }

  P &operator+=(const P &r) {
    if(r.size() > this->size()) this->resize(r.size());
    for(int i = 0; i < (int) r.size(); i++) (*this)[i] += r[i];
    return *this;
  }

  P &operator-=(const P &r) {
    if(r.size() > this->size()) this->resize(r.size());
    for(int i = 0; i < (int) r.size(); i++) (*this)[i] -= r[i];
    return *this;
  }

  // https://judge.yosupo.jp/problem/convolution_mod
  P &operator*=(const P &r) {
    if(this->empty() || r.empty()) {
      this->clear();
      return *this;
    }
    auto ret = NTT::multiply(*this, r);
    return *this = {begin(ret), end(ret)};
  }

  P &operator/=(const P &r) {
    if(this->size() < r.size()) {
      this->clear();
      return *this;
    }
    int n = this->size() - r.size() + 1;
    return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
  }

  P &operator%=(const P &r) {
    *this -= *this / r * r;
    shrink();
    return *this;
  }

  // https://judge.yosupo.jp/problem/division_of_polynomials
  pair< P, P > div_mod(const P &r) {
    P q = *this / r;
    P x = *this - q * r;
    x.shrink();
    return make_pair(q, x);
  }

  P operator-() const {
    P ret(this->size());
    for(int i = 0; i < (int) this->size(); i++) ret[i] = -(*this)[i];
    return ret;
  }

  P &operator+=(const T &r) {
    if(this->empty()) this->resize(1);
    (*this)[0] += r;
    return *this;
  }

  P &operator-=(const T &r) {
    if(this->empty()) this->resize(1);
    (*this)[0] -= r;
    return *this;
  }

  P &operator*=(const T &v) {
    for(int i = 0; i < (int) this->size(); i++) (*this)[i] *= v;
    return *this;
  }

  P dot(P r) const {
    P ret(min(this->size(), r.size()));
    for(int i = 0; i < (int) ret.size(); i++) ret[i] = (*this)[i] * r[i];
    return ret;
  }

  P operator>>(int sz) const {
    if((int) this->size() <= sz) return {};
    P ret(*this);
    ret.erase(ret.begin(), ret.begin() + sz);
    return ret;
  }

  P operator<<(int sz) const {
    P ret(*this);
    ret.insert(ret.begin(), sz, T(0));
    return ret;
  }

  T operator()(T x) const {
    T r = 0, w = 1;
    for(auto &v : *this) {
      r += w * v;
      w *= x;
    }
    return r;
  }

  P diff() const {
    const int n = (int) this->size();
    P ret(max(0, n - 1));
    for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
    return ret;
  }

  P integral() const {
    const int n = (int) this->size();
    P ret(n + 1);
    ret[0] = T(0);
    for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
    return ret;
  }

  // https://judge.yosupo.jp/problem/inv_of_formal_power_series
  // F(0) must not be 0
  P inv(int deg = -1) const {
    assert(((*this)[0]) != T(0));
    const int n = (int) this->size();
    if(deg == -1) deg = n;
    P res(deg);
    res[0] = {T(1) / (*this)[0]};
    for(int d = 1; d < deg; d <<= 1) {
      P f(2 * d), g(2 * d);
      for(int j = 0; j < min(n, 2 * d); j++) f[j] = (*this)[j];
      for(int j = 0; j < d; j++) g[j] = res[j];
      NTT::ntt(f);
      NTT::ntt(g);
      f = f.dot(g);
      NTT::intt(f);
      for(int j = 0; j < d; j++) f[j] = 0;
      NTT::ntt(f);
      for(int j = 0; j < 2 * d; j++) f[j] *= g[j];
      NTT::intt(f);
      for(int j = d; j < min(2 * d, deg); j++) res[j] = -f[j];
    }
    return res;
  }

  // https://judge.yosupo.jp/problem/log_of_formal_power_series
  // F(0) must be 1
  P log(int deg = -1) const {
    assert((*this)[0] == T(1));
    const int n = (int) this->size();
    if(deg == -1) deg = n;
    return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
  }

  // https://judge.yosupo.jp/problem/sqrt_of_formal_power_series
  P sqrt(int deg = -1, const function< T(T) > &get_sqrt = [](T) { return T(1); }) const {
    const int n = (int) this->size();
    if(deg == -1) deg = n;
    if((*this)[0] == T(0)) {
      for(int i = 1; i < n; i++) {
        if((*this)[i] != T(0)) {
          if(i & 1) return {};
          if(deg - i / 2 <= 0) break;
          auto ret = (*this >> i).sqrt(deg - i / 2, get_sqrt);
          if(ret.empty()) return {};
          ret = ret << (i / 2);
          if((int) ret.size() < deg) ret.resize(deg, T(0));
          return ret;
        }
      }
      return P(deg, 0);
    }
    auto sqr = T(get_sqrt((*this)[0]));
    if(sqr * sqr != (*this)[0]) return {};
    P ret{sqr};
    T inv2 = T(1) / T(2);
    for(int i = 1; i < deg; i <<= 1) {
      ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
    }
    return ret.pre(deg);
  }

  P sqrt(const function< T(T) > &get_sqrt, int deg = -1) const {
    return sqrt(deg, get_sqrt);
  }

  // https://judge.yosupo.jp/problem/exp_of_formal_power_series
  // F(0) must be 0
  P exp(int deg = -1) const {
    if(deg == -1) deg = this->size();
    assert((*this)[0] == T(0));

    P inv;
    inv.reserve(deg + 1);
    inv.push_back(T(0));
    inv.push_back(T(1));

    auto inplace_integral = [&](P &F) -> void {
      const int n = (int) F.size();
      auto mod = T::get_mod();
      while((int) inv.size() <= n) {
        int i = inv.size();
        inv.push_back((-inv[mod % i]) * (mod / i));
      }
      F.insert(begin(F), T(0));
      for(int i = 1; i <= n; i++) F[i] *= inv[i];
    };

    auto inplace_diff = [](P &F) -> void {
      if(F.empty()) return;
      F.erase(begin(F));
      T coeff = 1, one = 1;
      for(int i = 0; i < (int) F.size(); i++) {
        F[i] *= coeff;
        coeff += one;
      }
    };

    P b{1, 1 < (int) this->size() ? (*this)[1] : 0}, c{1}, z1, z2{1, 1};
    for(int m = 2; m < deg; m *= 2) {
      auto y = b;
      y.resize(2 * m);
      NTT::ntt(y);
      z1 = z2;
      P z(m);
      for(int i = 0; i < m; ++i) z[i] = y[i] * z1[i];
      NTT::intt(z);
      fill(begin(z), begin(z) + m / 2, T(0));
      NTT::ntt(z);
      for(int i = 0; i < m; ++i) z[i] *= -z1[i];
      NTT::intt(z);
      c.insert(end(c), begin(z) + m / 2, end(z));
      z2 = c;
      z2.resize(2 * m);
      NTT::ntt(z2);
      P x(begin(*this), begin(*this) + min< int >(this->size(), m));
      inplace_diff(x);
      x.push_back(T(0));
      NTT::ntt(x);
      for(int i = 0; i < m; ++i) x[i] *= y[i];
      NTT::intt(x);
      x -= b.diff();
      x.resize(2 * m);
      for(int i = 0; i < m - 1; ++i) x[m + i] = x[i], x[i] = T(0);
      NTT::ntt(x);
      for(int i = 0; i < 2 * m; ++i) x[i] *= z2[i];
      NTT::intt(x);
      x.pop_back();
      inplace_integral(x);
      for(int i = m; i < min< int >(this->size(), 2 * m); ++i) x[i] += (*this)[i];
      fill(begin(x), begin(x) + m, T(0));
      NTT::ntt(x);
      for(int i = 0; i < 2 * m; ++i) x[i] *= y[i];
      NTT::intt(x);
      b.insert(end(b), begin(x) + m, end(x));
    }
    return P{begin(b), begin(b) + deg};
  }

  // https://judge.yosupo.jp/problem/pow_of_formal_power_series
  P pow(int64_t k, int deg = -1) const {
    const int n = (int) this->size();
    if(deg == -1) deg = n;
    for(int i = 0; i < n; i++) {
      if((*this)[i] != T(0)) {
        T rev = T(1) / (*this)[i];
        P ret = (((*this * rev) >> i).log() * k).exp() * ((*this)[i].pow(k));
        if(i * k > deg) return P(deg, T(0));
        ret = (ret << (i * k)).pre(deg);
        if((int) ret.size() < deg) ret.resize(deg, T(0));
        return ret;
      }
    }
    return *this;
  }

  P mod_pow(int64_t k, P g) const {
    P modinv = g.rev().inv();
    auto get_div = [&](P base) {
      if(base.size() < g.size()) {
        base.clear();
        return base;
      }
      int n = base.size() - g.size() + 1;
      return (base.rev().pre(n) * modinv.pre(n)).pre(n).rev(n);
    };
    P x(*this), ret{1};
    while(k > 0) {
      if(k & 1) {
        ret *= x;
        ret -= get_div(ret) * g;
        ret.shrink();
      }
      x *= x;
      x -= get_div(x) * g;
      x.shrink();
      k >>= 1;
    }
    return ret;
  }

  // https://judge.yosupo.jp/problem/polynomial_taylor_shift
  P taylor_shift(T c) const {
    int n = (int) this->size();
    vector< T > fact(n), rfact(n);
    fact[0] = rfact[0] = T(1);
    for(int i = 1; i < n; i++) fact[i] = fact[i - 1] * T(i);
    rfact[n - 1] = T(1) / fact[n - 1];
    for(int i = n - 1; i > 1; i--) rfact[i - 1] = rfact[i] * T(i);
    P p(*this);
    for(int i = 0; i < n; i++) p[i] *= fact[i];
    p = p.rev();
    P bs(n, T(1));
    for(int i = 1; i < n; i++) bs[i] = bs[i - 1] * c * rfact[i] * fact[i - 1];
    p = (p * bs).pre(n);
    p = p.rev();
    for(int i = 0; i < n; i++) p[i] *= rfact[i];
    return p;
  }
};

#line 2 "/Users/siro53/kyo-pro/compro_library/modint/modint.hpp"

#line 6 "/Users/siro53/kyo-pro/compro_library/modint/modint.hpp"

template <int mod> class ModInt {
  public:
    ModInt() : x(0) {}
    ModInt(long long y)
        : x(y >= 0 ? y % umod() : (umod() - (-y) % umod()) % umod()) {}
    unsigned int val() const { return x; }
    ModInt &operator+=(const ModInt &p) {
        if((x += p.x) >= umod()) x -= umod();
        return *this;
    }
    ModInt &operator-=(const ModInt &p) {
        if((x += umod() - p.x) >= umod()) x -= umod();
        return *this;
    }
    ModInt &operator*=(const ModInt &p) {
        x = (unsigned int)(1ULL * x * p.x % umod());
        return *this;
    }
    ModInt &operator/=(const ModInt &p) {
        *this *= p.inv();
        return *this;
    }
    ModInt operator-() const { return ModInt(-(long long)x); }
    ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
    ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
    ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
    ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
    bool operator==(const ModInt &p) const { return x == p.x; }
    bool operator!=(const ModInt &p) const { return x != p.x; }
    ModInt inv() const {
        long long a = x, b = mod, u = 1, v = 0, t;
        while(b > 0) {
            t = a / b;
            std::swap(a -= t * b, b);
            std::swap(u -= t * v, v);
        }
        return ModInt(u);
    }
    ModInt pow(unsigned long long n) const {
        ModInt ret(1), mul(x);
        while(n > 0) {
            if(n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
        }
        return ret;
    }
    friend std::ostream &operator<<(std::ostream &os, const ModInt &p) {
        return os << p.x;
    }
    friend std::istream &operator>>(std::istream &is, ModInt &a) {
        long long t;
        is >> t;
        a = ModInt<mod>(t);
        return (is);
    }
    static constexpr int get_mod() { return mod; }

  private:
    unsigned int x;
    static constexpr unsigned int umod() { return mod; }
};
#line 630 "combined.cpp"
using mint = ModInt<MOD2>;
using FPS = FormalPowerSeriesFriendlyNTT<mint>;

int main() {
    int N, M;
    cin >> N >> M;
    queue<pair<FPS, FPS>> que;
    REP(i, N) {
        mint a;
        cin >> a;
        que.emplace(FPS({1}), FPS({1, -a}));
    }
    while(SZ(que) >= 2) {
        auto [g1, f1] = que.front();
        que.pop();
        auto [g2, f2] = que.front();
        que.pop();
        que.emplace(f2 * g1 + f1 * g2, f1 * f2);
    }
    auto [g, f] = que.front();
    g.resize(M+1);
    f.resize(M+1);
    FPS res = g * f.inv();
    debug(SZ(res));
    REP(i, 1, M+1) {
        cout << (i < SZ(res) ? res[i] : 0) << " \n"[i == M];
    }
}
0