結果
| 問題 |
No.181 A↑↑N mod M
|
| コンテスト | |
| ユーザー |
mkawa2
|
| 提出日時 | 2023-03-23 22:37:05 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 2,027 bytes |
| コンパイル時間 | 170 ms |
| コンパイル使用メモリ | 82,460 KB |
| 実行使用メモリ | 80,692 KB |
| 最終ジャッジ日時 | 2024-09-18 15:40:32 |
| 合計ジャッジ時間 | 2,802 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 6 |
| other | AC * 31 WA * 4 RE * 2 |
ソースコード
import sys
# sys.setrecursionlimit(200005)
int1 = lambda x: int(x)-1
pDB = lambda *x: print(*x, end="\n", file=sys.stderr)
p2D = lambda x: print(*x, sep="\n", end="\n\n", file=sys.stderr)
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()
dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
inf = (1 << 63)-1
# inf = (1 << 31)-1
md = 10**9+7
# md = 998244353
def prime_factorization(a):
pp, ee = [], []
if a & 1 == 0:
pp += [2]
ee += [0]
while a & 1 == 0:
a >>= 1
ee[-1] += 1
p = 3
while p**2 <= a:
if a%p == 0:
pp += [p]
ee += [0]
while a%p == 0:
a //= p
ee[-1] += 1
p += 2
if a > 1:
pp += [a]
ee += [1]
return pp, ee
a, n, m = LI()
if m == 1:
print(0)
exit()
if n == 0 or a == 1:
print(1)
exit()
pp, ee = prime_factorization(a)
pe = {p: e for p, e in zip(pp, ee)}
def tozero(m):
res = 0
pp, ee = prime_factorization(m)
for p, e in zip(pp, ee):
if p not in pe: return -1, pp
res = max(res, (e+pe[p]-1)//pe[p])
return res, []
def fm(n, m):
if m == 1: return 0
if n == 0: return 1
lim, pp = tozero(m)
if lim == -1:
d = m
for p in pp: d = d//p*(p-1)
e = fm(n-1, d)+d
return pow(a, e, m)
e = f(n, lim)
if e == lim: return 0
return pow(a, e, m)
def f(n, lim):
if n == 0: return 1
if lim <= a: return lim
nlim = 0
p = 1
while nlim < lim:
p *= a
nlim += 1
e = f(n-1, nlim)
if e >= nlim: return lim
return pow(a, e)
print(fm(n, m))
mkawa2