結果

問題 No.105 arcの六角ボルト
ユーザー jabeejabee
提出日時 2023-03-23 23:42:36
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 5,481 bytes
コンパイル時間 4,603 ms
コンパイル使用メモリ 271,008 KB
実行使用メモリ 26,264 KB
最終ジャッジ日時 2024-09-18 15:45:25
合計ジャッジ時間 16,951 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 TLE -
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function 'void _main()':
main.cpp:133:15: warning: 'ans' may be used uninitialized [-Wmaybe-uninitialized]
  133 |   cout << ans *180/M_PI << endl;
      |           ~~~~^~~~
main.cpp:101:10: note: 'ans' was declared here
  101 |   double ans;
      |          ^~~

ソースコード

diff #

#include<bits/stdc++.h>
#include <math.h>
#include <algorithm>
#include <iostream>
#include <vector>
#include <atcoder/all>
#include <atcoder/dsu>
#include <atcoder/segtree>
#include <atcoder/lazysegtree>
#include <atcoder/modint>
#include <atcoder/scc>
#include <chrono>
#include <random>
#include <cassert>
#ifndef templete
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(x) (x).begin(),(x).end()

//#include<boost/multiprecision/cpp_int.hpp>
//using namespace boost::multiprecision;
using namespace std;
using namespace atcoder;
//using atmint = modint998244353;
using atmint = modint;
using Graph = vector<vector<int>>;
using P = pair<long long,long long>;
//#pragma GCC optimize ("-O3")
using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); }
typedef long long ll; const int inf = INT_MAX / 2; const ll infl = 1LL << 60;
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }

//---------------------------------------------------------------------------------------------------

template<int MOD> struct ModInt {
    static const int Mod = MOD; unsigned x; ModInt() : x(0) { }
    ModInt(signed sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
    ModInt(signed long long sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
    int get() const { return (int)x; }
    ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; }
    ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
    ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
    ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
    ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
    ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
    ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
    ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
    ModInt inverse() const { long long a = x, b = MOD, u = 1, v = 0;
        while (b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); }
        return ModInt(u); }
    bool operator==(ModInt that) const { return x == that.x; }
    bool operator!=(ModInt that) const { return x != that.x; }
    ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; }
};
template<int MOD> ostream& operator<<(ostream& st, const ModInt<MOD> a) { st << a.get(); return st; };
template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {
    ModInt<MOD> r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r; }
template<typename T, int FAC_MAX> struct Comb { vector<T> fac, ifac;
    Comb(){fac.resize(FAC_MAX,1);ifac.resize(FAC_MAX,1);rep(i,1,FAC_MAX)fac[i]=fac[i-1]*i;
        ifac[FAC_MAX-1]=T(1)/fac[FAC_MAX-1];rrep(i,FAC_MAX-2,1)ifac[i]=ifac[i+1]*T(i+1);}
    T aPb(int a, int b) { if (b < 0 || a < b) return T(0); return fac[a] * ifac[a - b]; }
    T aCb(int a, int b) { if (b < 0 || a < b) return T(0); return fac[a] * ifac[a - b] * ifac[b]; }
    T nHk(int n, int k) { if (n == 0 && k == 0) return T(1); if (n <= 0 || k < 0) return 0;
        return aCb(n + k - 1, k); } // nHk = (n+k-1)Ck : n is separator
    T pairCombination(int n) {if(n%2==1)return T(0);return fac[n]*ifac[n/2]/(T(2)^(n/2));}
    // combination of paris for n com.aCb(h+w-2,h-1);
}; 
//typedef ModInt<1000000007> mint;
typedef ModInt<998244353> mint; 
//typedef ModInt<1000000000> mint; 
Comb<mint, 2010101> com;
//vector dp(n+1,vector(n+1,vector<ll>(n+1,0)));
//vector dp(n+1,vector<ll>(n+1,0));
  std::random_device seed_gen;
  std::mt19937 engine(seed_gen());
string ye = "Yes"; string no = "No"; string draw = "Draw";

#endif // templete
//---------------------------------------------------------------------------------------------------
void _main() {
  ll t;
  cin >> t;
  ll cnt = 0;
  rep(ti,0,t){
  vector<ll>p;
  ll n = 6;
  rep(i,0,n)p.push_back(i);
  vector<double>x(n),y(n);
  rep(i,0,n)cin >> x[i] >> y[i];
  vector<double>ox(n),oy(n);
  double px , py;
  px = 1;
  py = 0;
  rep(i,0,6){
  double theta = M_PI / 3.0 * i;
  ox[i] = px * cos(theta) - py * sin(theta);
  oy[i] = py * cos(theta) + px * sin(theta);
  }
  double ans;
  double minscore = infl;
  do{
    cnt++;
  double tempscore = infl;
  double l = 0;
  double r = 50.0 * M_PI / 180.0;
  rep(j,0,50){
  double c1 = (l * 2 + r) / 3;
  double c2 = (l  + r* 2) / 3;
  vector<double>c1x(n),c1y(n),c2x(n),c2y(n);
  rep(i,0,n){
  double add = M_PI / 3.0 * i;
  c1x[i] = px * cos(c1 + add) - py * sin(c1 + add);
  c1y[i] = py * cos(c1 + add) + px * sin(c1 + add);
  c2x[i] = px * cos(c2 + add) - py * sin(c2 + add);
  c2y[i] = py * cos(c2 + add) + px * sin(c2 + add);
  }
  double c1score = 0;
  double c2score = 0;
  rep(i,0,n){
  c1score += (x[p[i]] - c1x[i])*(x[p[i]] - c1x[i]) + (y[p[i]] - c1y[i])*(y[p[i]] - c1y[i]);
  c2score += (x[p[i]] - c2x[i])*(x[p[i]] - c2x[i]) + (y[p[i]] - c2y[i])*(y[p[i]] - c2y[i]);
  }
  chmin(tempscore,c1score);
  if(c1score < c2score)r = c2;
  else l = c1;
  }
  if(chmin(minscore,tempscore))ans = l;
  }while(next_permutation(p.begin(),p.end()));
 
  cout << fixed << setprecision(20);
  cout << ans *180/M_PI << endl;  
 //cerr << cnt << endl;  
  }
  
}
0