結果
| 問題 |
No.1242 高橋君とすごろく
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-03-24 19:06:21 |
| 言語 | Go (1.23.4) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 8,082 bytes |
| コンパイル時間 | 11,810 ms |
| コンパイル使用メモリ | 220,908 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-09-18 16:34:51 |
| 合計ジャッジ時間 | 13,224 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 24 |
ソースコード
package main
import (
"bufio"
"fmt"
"os"
)
func main() {
yuki1242()
}
func demo() {
F := NewFunctionalGraph(6)
F.AddDirectedEdge(0, 1, 1)
F.AddDirectedEdge(1, 2, 1)
F.AddDirectedEdge(2, 3, 1)
F.AddDirectedEdge(3, 4, 1)
F.AddDirectedEdge(4, 5, 1)
F.AddDirectedEdge(5, 0, 1)
F.Build()
fmt.Println(F.Jump(0, 7))
}
func yuki1242() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, k int
fmt.Fscan(in, &n, &k)
nums := make([]int, k)
for i := 0; i < k; i++ {
fmt.Fscan(in, &nums[i])
}
G := NewFunctionalGraph(64)
for s := 0; s < 64; s++ {
t := (2 * s) & 63
ok := true
if s&1 == 0 && s&32 == 0 {
ok = false
}
if s&2 == 0 && s&16 == 0 {
ok = false
}
if s&4 == 0 && s&8 == 0 {
ok = false
}
if ok {
t |= 1
}
G.AddDirectedEdge(s, t, 1)
}
G.Build()
x := n
s := 63
for i := k - 1; i >= 0; i-- {
y := nums[i]
s = G.Jump(s, x-y)
s &= 62
x = y
}
s = G.Jump(s, x-1)
if s&1 == 1 {
fmt.Fprintln(out, "Yes")
} else {
fmt.Fprintln(out, "No")
}
}
type FunctionalGraph struct {
G [][][2]int // (next, weight) 有向图
Tree *Tree
n, m int
to []int
weight []int
root []int
}
func NewFunctionalGraph(n int) *FunctionalGraph {
fg := &FunctionalGraph{
n: n,
to: make([]int, n),
weight: make([]int, n),
root: make([]int, n),
}
for i := 0; i < n; i++ {
fg.to[i] = -1
fg.root[i] = -1
}
return fg
}
func (fg *FunctionalGraph) AddDirectedEdge(u, v, w int) {
fg.m++
fg.to[u] = v
fg.weight[u] = w
}
func (fg *FunctionalGraph) Build() {
n := fg.n
uf := _NewUF(n)
for i := 0; i < n; i++ {
if !uf.Union(i, fg.to[i]) {
fg.root[i] = i
}
}
for i := 0; i < n; i++ {
if fg.root[i] == i {
fg.root[uf.Find(i)] = i
}
}
for i := 0; i < n; i++ {
fg.root[i] = fg.root[uf.Find(i)]
}
g := make([][][2]int, n+1)
for i := 0; i < n; i++ {
if fg.root[i] == i {
g[n] = append(g[n], [2]int{i, fg.weight[i]})
} else {
to := fg.to[i]
g[to] = append(g[to], [2]int{i, fg.weight[i]})
}
}
tree := _NT(g)
tree.Build(n)
fg.G = g
fg.Tree = tree
}
// 从 v 出发,走 step 步,返回到达的点.
func (fg *FunctionalGraph) Jump(v, step int) int {
d := fg.Tree.Depth[v]
if step <= d-1 {
return fg.Tree.Jump(v, fg.n, step)
}
v = fg.root[v]
step -= d - 1
bottom := fg.to[v]
c := fg.Tree.Depth[bottom]
step %= c
if step == 0 {
return v
}
return fg.Tree.Jump(bottom, fg.n, step-1)
}
// 给定跳跃步数,返回每个节点在该步数内跳跃到的目标节点编号.
func (fg *FunctionalGraph) JumpAll(step int) []int {
G := fg.Tree.Tree
res := make([]int, fg.n)
for i := 0; i < fg.n; i++ {
res[i] = -1
}
query := make([][][2]int, fg.n)
for v := 0; v < fg.n; v++ {
d := fg.Tree.Depth[v]
r := fg.root[v]
if d-1 > step {
query[v] = append(query[v], [2]int{v, int(step)})
} else {
k := step - (d - 1)
bottom := fg.to[r]
c := fg.Tree.Depth[bottom]
k %= c
if k == 0 {
res[v] = r
continue
}
query[bottom] = append(query[bottom], [2]int{v, k - 1})
}
}
path := make([]int, 0)
var dfs func(v int)
dfs = func(v int) {
path = append(path, v)
for _, q := range query[v] {
res[q[0]] = path[len(path)-1-q[1]]
}
for _, e := range G[v] {
dfs(e[0])
}
path = path[:len(path)-1]
}
for _, e := range G[fg.n] {
dfs(e[0])
}
return res
}
// 判断节 v 点是否在 FunctionalGraph 对应的无向图中的环中.
func (fg *FunctionalGraph) IsInCycle(v int) bool {
return fg.Tree.IsInSubtree(fg.to[fg.root[v]], v)
}
// 给定环的根节点,返回该环上所有节点的编号.
func (fg *FunctionalGraph) CollectCycle(root int) []int {
cycle := []int{fg.to[root]}
for cycle[len(cycle)-1] != root {
cycle = append(cycle, fg.to[cycle[len(cycle)-1]])
}
return cycle
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
type Tree struct {
Tree [][][2]int // (next, weight) 有向图
Depth []int
Parent []int
LID, RID []int // 欧拉序[in,out)
idToNode []int
top, heavySon []int
timer int
}
func _NT(graph [][][2]int) *Tree {
n := len(graph)
lid := make([]int, n)
rid := make([]int, n)
idToNode := make([]int, n)
top := make([]int, n)
depth := make([]int, n) // 深度
parent := make([]int, n) // 父结点
heavySon := make([]int, n) // 重儿子
for i := range parent {
parent[i] = -1
}
return &Tree{
Tree: graph, // 有向图
Depth: depth,
Parent: parent,
LID: lid,
RID: rid,
idToNode: idToNode,
top: top,
heavySon: heavySon,
}
}
// root:0-based
// 当root设为-1时,会从0开始遍历未访问过的连通分量
func (tree *Tree) Build(root int) {
if root != -1 {
tree.build(root, -1, 0, 0)
tree.markTop(root, root)
} else {
for i := 0; i < len(tree.Tree); i++ {
if tree.Parent[i] == -1 {
tree.build(i, -1, 0, 0)
tree.markTop(i, i)
}
}
}
}
func (tree *Tree) LCA(u, v int) int {
for {
if tree.LID[u] > tree.LID[v] {
u, v = v, u
}
if tree.top[u] == tree.top[v] {
return u
}
v = tree.Parent[tree.top[v]]
}
}
// k: 0-based
// 如果不存在第k个祖先,返回-1
func (tree *Tree) KthAncestor(root, k int) int {
if k > tree.Depth[root] {
return -1
}
for {
u := tree.top[root]
if tree.LID[root]-k >= tree.LID[u] {
return tree.idToNode[tree.LID[root]-k]
}
k -= tree.LID[root] - tree.LID[u] + 1
root = tree.Parent[u]
}
}
// 从 from 节点跳向 to 节点,跳过 step 个节点(0-indexed)
// 返回跳到的节点,如果不存在这样的节点,返回-1
func (tree *Tree) Jump(from, to, step int) int {
if step == 1 {
if from == to {
return -1
}
if tree.IsInSubtree(to, from) {
return tree.KthAncestor(to, tree.Depth[to]-tree.Depth[from]-1)
}
return tree.Parent[from]
}
c := tree.LCA(from, to)
dac := tree.Depth[from] - tree.Depth[c]
dbc := tree.Depth[to] - tree.Depth[c]
if step > dac+dbc {
return -1
}
if step <= dac {
return tree.KthAncestor(from, step)
}
return tree.KthAncestor(to, dac+dbc-step)
}
// child 是否在 root 的子树中 (child和root不能相等)
func (tree *Tree) IsInSubtree(child, root int) bool {
return tree.LID[root] <= tree.LID[child] && tree.LID[child] < tree.RID[root]
}
func (tree *Tree) build(cur, pre, dep, dist int) int {
subSize, heavySize, heavySon := 1, 0, -1
for _, e := range tree.Tree[cur] { // 有向
next, weight := e[0], e[1]
nextSize := tree.build(next, cur, dep+1, dist+weight)
subSize += nextSize
if nextSize > heavySize {
heavySize, heavySon = nextSize, next
}
}
tree.Depth[cur] = dep
tree.heavySon[cur] = heavySon
tree.Parent[cur] = pre
return subSize
}
func (tree *Tree) markTop(cur, top int) {
tree.top[cur] = top
tree.LID[cur] = tree.timer
tree.idToNode[tree.timer] = cur
tree.timer++
if tree.heavySon[cur] != -1 {
tree.markTop(tree.heavySon[cur], top)
for _, e := range tree.Tree[cur] {
next := e[0]
if next != tree.heavySon[cur] { // 有向
tree.markTop(next, next)
}
}
}
tree.RID[cur] = tree.timer
}
func _NewUF(n int) *_UF {
parent, rank := make([]int, n), make([]int, n)
for i := 0; i < n; i++ {
parent[i] = i
rank[i] = 1
}
return &_UF{
Part: n,
rank: rank,
n: n,
parent: parent,
}
}
type _UF struct {
// 连通分量的个数
Part int
rank []int
n int
parent []int
}
func (ufa *_UF) Union(key1, key2 int) bool {
root1, root2 := ufa.Find(key1), ufa.Find(key2)
if root1 == root2 {
return false
}
if ufa.rank[root1] > ufa.rank[root2] {
root1, root2 = root2, root1
}
ufa.parent[root1] = root2
ufa.rank[root2] += ufa.rank[root1]
ufa.Part--
return true
}
func (ufa *_UF) Find(key int) int {
for ufa.parent[key] != key {
ufa.parent[key] = ufa.parent[ufa.parent[key]]
key = ufa.parent[key]
}
return key
}
func (ufa *_UF) IsConnected(key1, key2 int) bool {
return ufa.Find(key1) == ufa.Find(key2)
}
func (ufa *_UF) Size(key int) int {
return ufa.rank[ufa.Find(key)]
}