結果
問題 | No.2255 Determinant Sum |
ユーザー | hitonanode |
提出日時 | 2023-03-24 22:10:21 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 385 ms / 2,000 ms |
コード長 | 27,427 bytes |
コンパイル時間 | 2,297 ms |
コンパイル使用メモリ | 196,176 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-18 17:09:54 |
合計ジャッジ時間 | 6,448 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,944 KB |
testcase_02 | AC | 4 ms
6,944 KB |
testcase_03 | AC | 4 ms
6,940 KB |
testcase_04 | AC | 5 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 385 ms
6,940 KB |
testcase_07 | AC | 275 ms
6,940 KB |
testcase_08 | AC | 318 ms
6,940 KB |
testcase_09 | AC | 317 ms
6,944 KB |
testcase_10 | AC | 314 ms
6,944 KB |
testcase_11 | AC | 14 ms
6,944 KB |
testcase_12 | AC | 160 ms
6,944 KB |
testcase_13 | AC | 15 ms
6,944 KB |
testcase_14 | AC | 349 ms
6,944 KB |
testcase_15 | AC | 139 ms
6,940 KB |
testcase_16 | AC | 126 ms
6,940 KB |
testcase_17 | AC | 123 ms
6,940 KB |
testcase_18 | AC | 114 ms
6,944 KB |
testcase_19 | AC | 135 ms
6,940 KB |
testcase_20 | AC | 136 ms
6,940 KB |
testcase_21 | AC | 182 ms
6,944 KB |
testcase_22 | AC | 149 ms
6,940 KB |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template <typename T, typename V> void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; } const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); } template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); } template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); } template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); } template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; } template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); } template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); } template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec); template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr); template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa); template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec); template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec); template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa); template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp); template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp); template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl); template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; } template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; } template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; } template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; } template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; } template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; } #ifdef HITONANODE_LOCAL const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m"; #define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl #define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << std::endl : std::cerr) #else #define dbg(x) ((void)0) #define dbgif(cond, x) ((void)0) #endif struct ModIntRuntime { private: static int md; public: using lint = long long; static int mod() { return md; } int val_; static std::vector<ModIntRuntime> &facs() { static std::vector<ModIntRuntime> facs_; return facs_; } static int &get_primitive_root() { static int primitive_root_ = 0; if (!primitive_root_) { primitive_root_ = [&]() { std::set<int> fac; int v = md - 1; for (lint i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i; if (v > 1) fac.insert(v); for (int g = 1; g < md; g++) { bool ok = true; for (auto i : fac) if (ModIntRuntime(g).power((md - 1) / i) == 1) { ok = false; break; } if (ok) return g; } return -1; }(); } return primitive_root_; } static void set_mod(const int &m) { if (md != m) facs().clear(); md = m; get_primitive_root() = 0; } ModIntRuntime &_setval(lint v) { val_ = (v >= md ? v - md : v); return *this; } int val() const noexcept { return val_; } ModIntRuntime() : val_(0) {} ModIntRuntime(lint v) { _setval(v % md + md); } explicit operator bool() const { return val_ != 0; } ModIntRuntime operator+(const ModIntRuntime &x) const { return ModIntRuntime()._setval((lint)val_ + x.val_); } ModIntRuntime operator-(const ModIntRuntime &x) const { return ModIntRuntime()._setval((lint)val_ - x.val_ + md); } ModIntRuntime operator*(const ModIntRuntime &x) const { return ModIntRuntime()._setval((lint)val_ * x.val_ % md); } ModIntRuntime operator/(const ModIntRuntime &x) const { return ModIntRuntime()._setval((lint)val_ * x.inv().val() % md); } ModIntRuntime operator-() const { return ModIntRuntime()._setval(md - val_); } ModIntRuntime &operator+=(const ModIntRuntime &x) { return *this = *this + x; } ModIntRuntime &operator-=(const ModIntRuntime &x) { return *this = *this - x; } ModIntRuntime &operator*=(const ModIntRuntime &x) { return *this = *this * x; } ModIntRuntime &operator/=(const ModIntRuntime &x) { return *this = *this / x; } friend ModIntRuntime operator+(lint a, const ModIntRuntime &x) { return ModIntRuntime()._setval(a % md + x.val_); } friend ModIntRuntime operator-(lint a, const ModIntRuntime &x) { return ModIntRuntime()._setval(a % md - x.val_ + md); } friend ModIntRuntime operator*(lint a, const ModIntRuntime &x) { return ModIntRuntime()._setval(a % md * x.val_ % md); } friend ModIntRuntime operator/(lint a, const ModIntRuntime &x) { return ModIntRuntime()._setval(a % md * x.inv().val() % md); } bool operator==(const ModIntRuntime &x) const { return val_ == x.val_; } bool operator!=(const ModIntRuntime &x) const { return val_ != x.val_; } bool operator<(const ModIntRuntime &x) const { return val_ < x.val_; } // To use std::map<ModIntRuntime, T> friend std::istream &operator>>(std::istream &is, ModIntRuntime &x) { lint t; return is >> t, x = ModIntRuntime(t), is; } friend std::ostream &operator<<(std::ostream &os, const ModIntRuntime &x) { return os << x.val_; } lint power(lint n) const { lint ans = 1, tmp = this->val_; while (n) { if (n & 1) ans = ans * tmp % md; tmp = tmp * tmp % md; n /= 2; } return ans; } ModIntRuntime pow(lint n) const { return power(n); } ModIntRuntime inv() const { return this->pow(md - 2); } ModIntRuntime fac() const { int l0 = facs().size(); if (l0 > this->val_) return facs()[this->val_]; facs().resize(this->val_ + 1); for (int i = l0; i <= this->val_; i++) facs()[i] = (i == 0 ? ModIntRuntime(1) : facs()[i - 1] * ModIntRuntime(i)); return facs()[this->val_]; } ModIntRuntime doublefac() const { lint k = (this->val_ + 1) / 2; return (this->val_ & 1) ? ModIntRuntime(k * 2).fac() / (ModIntRuntime(2).pow(k) * ModIntRuntime(k).fac()) : ModIntRuntime(k).fac() * ModIntRuntime(2).pow(k); } ModIntRuntime nCr(const ModIntRuntime &r) const { return (this->val_ < r.val_) ? ModIntRuntime(0) : this->fac() / ((*this - r).fac() * r.fac()); } ModIntRuntime sqrt() const { if (val_ == 0) return 0; if (md == 2) return val_; if (power((md - 1) / 2) != 1) return 0; ModIntRuntime b = 1; while (b.power((md - 1) / 2) == 1) b += 1; int e = 0, m = md - 1; while (m % 2 == 0) m >>= 1, e++; ModIntRuntime x = power((m - 1) / 2), y = (*this) * x * x; x *= (*this); ModIntRuntime z = b.power(m); while (y != 1) { int j = 0; ModIntRuntime t = y; while (t != 1) j++, t *= t; z = z.power(1LL << (e - j - 1)); x *= z, z *= z, y *= z; e = j; } return ModIntRuntime(std::min(x.val_, md - x.val_)); } }; int ModIntRuntime::md = 1; using mint = ModIntRuntime; namespace matrix_ { struct has_id_method_impl { template <class T_> static auto check(T_ *) -> decltype(T_::id(), std::true_type()); template <class T_> static auto check(...) -> std::false_type; }; template <class T_> struct has_id : decltype(has_id_method_impl::check<T_>(nullptr)) {}; } // namespace matrix_ template <typename T> struct matrix { int H, W; std::vector<T> elem; typename std::vector<T>::iterator operator[](int i) { return elem.begin() + i * W; } inline T &at(int i, int j) { return elem[i * W + j]; } inline T get(int i, int j) const { return elem[i * W + j]; } int height() const { return H; } int width() const { return W; } std::vector<std::vector<T>> vecvec() const { std::vector<std::vector<T>> ret(H); for (int i = 0; i < H; i++) { std::copy(elem.begin() + i * W, elem.begin() + (i + 1) * W, std::back_inserter(ret[i])); } return ret; } operator std::vector<std::vector<T>>() const { return vecvec(); } matrix() = default; matrix(int H, int W) : H(H), W(W), elem(H * W) {} matrix(const std::vector<std::vector<T>> &d) : H(d.size()), W(d.size() ? d[0].size() : 0) { for (auto &raw : d) std::copy(raw.begin(), raw.end(), std::back_inserter(elem)); } template <typename T2, typename std::enable_if<matrix_::has_id<T2>::value>::type * = nullptr> static T2 _T_id() { return T2::id(); } template <typename T2, typename std::enable_if<!matrix_::has_id<T2>::value>::type * = nullptr> static T2 _T_id() { return T2(1); } static matrix Identity(int N) { matrix ret(N, N); for (int i = 0; i < N; i++) ret.at(i, i) = _T_id<T>(); return ret; } matrix operator-() const { matrix ret(H, W); for (int i = 0; i < H * W; i++) ret.elem[i] = -elem[i]; return ret; } matrix operator*(const T &v) const { matrix ret = *this; for (auto &x : ret.elem) x *= v; return ret; } matrix operator/(const T &v) const { matrix ret = *this; const T vinv = _T_id<T>() / v; for (auto &x : ret.elem) x *= vinv; return ret; } matrix operator+(const matrix &r) const { matrix ret = *this; for (int i = 0; i < H * W; i++) ret.elem[i] += r.elem[i]; return ret; } matrix operator-(const matrix &r) const { matrix ret = *this; for (int i = 0; i < H * W; i++) ret.elem[i] -= r.elem[i]; return ret; } matrix operator*(const matrix &r) const { matrix ret(H, r.W); for (int i = 0; i < H; i++) { for (int k = 0; k < W; k++) { for (int j = 0; j < r.W; j++) ret.at(i, j) += this->get(i, k) * r.get(k, j); } } return ret; } matrix &operator*=(const T &v) { return *this = *this * v; } matrix &operator/=(const T &v) { return *this = *this / v; } matrix &operator+=(const matrix &r) { return *this = *this + r; } matrix &operator-=(const matrix &r) { return *this = *this - r; } matrix &operator*=(const matrix &r) { return *this = *this * r; } bool operator==(const matrix &r) const { return H == r.H and W == r.W and elem == r.elem; } bool operator!=(const matrix &r) const { return H != r.H or W != r.W or elem != r.elem; } bool operator<(const matrix &r) const { return elem < r.elem; } matrix pow(int64_t n) const { matrix ret = Identity(H); bool ret_is_id = true; if (n == 0) return ret; for (int i = 63 - __builtin_clzll(n); i >= 0; i--) { if (!ret_is_id) ret *= ret; if ((n >> i) & 1) ret *= (*this), ret_is_id = false; } return ret; } std::vector<T> pow_vec(int64_t n, std::vector<T> vec) const { matrix x = *this; while (n) { if (n & 1) vec = x * vec; x *= x; n >>= 1; } return vec; }; matrix transpose() const { matrix ret(W, H); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) ret.at(j, i) = this->get(i, j); } return ret; } // Gauss-Jordan elimination // - Require inverse for every non-zero element // - Complexity: O(H^2 W) template <typename T2, typename std::enable_if<std::is_floating_point<T2>::value>::type * = nullptr> static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept { int piv = -1; for (int j = h; j < mtr.H; j++) { if (mtr.get(j, c) and (piv < 0 or std::abs(mtr.get(j, c)) > std::abs(mtr.get(piv, c)))) piv = j; } return piv; } template <typename T2, typename std::enable_if<!std::is_floating_point<T2>::value>::type * = nullptr> static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept { for (int j = h; j < mtr.H; j++) { if (mtr.get(j, c) != T2()) return j; } return -1; } matrix gauss_jordan() const { int c = 0; matrix mtr(*this); std::vector<int> ws; ws.reserve(W); for (int h = 0; h < H; h++) { if (c == W) break; int piv = choose_pivot(mtr, h, c); if (piv == -1) { c++; h--; continue; } if (h != piv) { for (int w = 0; w < W; w++) { std::swap(mtr[piv][w], mtr[h][w]); mtr.at(piv, w) *= -_T_id<T>(); // To preserve sign of determinant } } ws.clear(); for (int w = c; w < W; w++) { if (mtr.at(h, w) != T()) ws.emplace_back(w); } const T hcinv = _T_id<T>() / mtr.at(h, c); for (int hh = 0; hh < H; hh++) if (hh != h) { const T coeff = mtr.at(hh, c) * hcinv; for (auto w : ws) mtr.at(hh, w) -= mtr.at(h, w) * coeff; mtr.at(hh, c) = T(); } c++; } return mtr; } int rank_of_gauss_jordan() const { for (int i = H * W - 1; i >= 0; i--) { if (elem[i] != 0) return i / W + 1; } return 0; } int rank() const { return gauss_jordan().rank_of_gauss_jordan(); } T determinant_of_upper_triangle() const { T ret = _T_id<T>(); for (int i = 0; i < H; i++) ret *= get(i, i); return ret; } int inverse() { assert(H == W); std::vector<std::vector<T>> ret = Identity(H), tmp = *this; int rank = 0; for (int i = 0; i < H; i++) { int ti = i; while (ti < H and tmp[ti][i] == 0) ti++; if (ti == H) { continue; } else { rank++; } ret[i].swap(ret[ti]), tmp[i].swap(tmp[ti]); T inv = _T_id<T>() / tmp[i][i]; for (int j = 0; j < W; j++) ret[i][j] *= inv; for (int j = i + 1; j < W; j++) tmp[i][j] *= inv; for (int h = 0; h < H; h++) { if (i == h) continue; const T c = -tmp[h][i]; for (int j = 0; j < W; j++) ret[h][j] += ret[i][j] * c; for (int j = i + 1; j < W; j++) tmp[h][j] += tmp[i][j] * c; } } *this = ret; return rank; } friend std::vector<T> operator*(const matrix &m, const std::vector<T> &v) { assert(m.W == int(v.size())); std::vector<T> ret(m.H); for (int i = 0; i < m.H; i++) { for (int j = 0; j < m.W; j++) ret[i] += m.get(i, j) * v[j]; } return ret; } friend std::vector<T> operator*(const std::vector<T> &v, const matrix &m) { assert(int(v.size()) == m.H); std::vector<T> ret(m.W); for (int i = 0; i < m.H; i++) { for (int j = 0; j < m.W; j++) ret[j] += v[i] * m.get(i, j); } return ret; } std::vector<T> prod(const std::vector<T> &v) const { return (*this) * v; } std::vector<T> prod_left(const std::vector<T> &v) const { return v * (*this); } template <class OStream> friend OStream &operator<<(OStream &os, const matrix &x) { os << "[(" << x.H << " * " << x.W << " matrix)"; os << "\n[column sums: "; for (int j = 0; j < x.W; j++) { T s = 0; for (int i = 0; i < x.H; i++) s += x.get(i, j); os << s << ","; } os << "]"; for (int i = 0; i < x.H; i++) { os << "\n["; for (int j = 0; j < x.W; j++) os << x.get(i, j) << ","; os << "]"; } os << "]\n"; return os; } template <class IStream> friend IStream &operator>>(IStream &is, matrix &x) { for (auto &v : x.elem) is >> v; return is; } }; // Characteristic polynomial of upper Hessenberg matrix M (|xI - M|) // Complexity: O(n^3) // R. Rehman, I. C. Ipsen, "La Budde's Method for Computing Characteristic Polynomials," 2011. template <class Tp> std::vector<Tp> characteristic_poly_of_hessenberg(matrix<Tp> &M) { const int N = M.height(); // p[i + 1] = (Characteristic polynomial of i-th leading principal minor) std::vector<std::vector<Tp>> p(N + 1); p[0] = {1}; for (int i = 0; i < N; i++) { p[i + 1].assign(i + 2, Tp()); for (int j = 0; j < i + 1; j++) p[i + 1][j + 1] += p[i][j]; for (int j = 0; j < i + 1; j++) p[i + 1][j] -= p[i][j] * M[i][i]; Tp betas = 1; for (int j = i - 1; j >= 0; j--) { betas *= M[j + 1][j]; Tp hb = -M[j][i] * betas; for (int k = 0; k < j + 1; k++) p[i + 1][k] += hb * p[j][k]; } } return p[N]; } // Upper Hessenberg reduction of square matrices // Complexity: O(n^3) // Reference: // http://www.phys.uri.edu/nigh/NumRec/bookfpdf/f11-5.pdf template <class Tp> void hessenberg_reduction(matrix<Tp> &M) { assert(M.height() == M.width()); const int N = M.height(); for (int r = 0; r < N - 2; r++) { int piv = matrix<Tp>::choose_pivot(M, r + 1, r); if (piv < 0) continue; for (int i = 0; i < N; i++) std::swap(M[r + 1][i], M[piv][i]); for (int i = 0; i < N; i++) std::swap(M[i][r + 1], M[i][piv]); const auto rinv = Tp(1) / M[r + 1][r]; for (int i = r + 2; i < N; i++) { const auto n = M[i][r] * rinv; for (int j = 0; j < N; j++) M[i][j] -= M[r + 1][j] * n; for (int j = 0; j < N; j++) M[j][r + 1] += M[j][i] * n; } } } template <class Ring> void ring_hessenberg_reduction(matrix<Ring> &M) { assert(M.height() == M.width()); const int N = M.height(); for (int r = 0; r < N - 2; r++) { int piv = matrix<Ring>::choose_pivot(M, r + 1, r); if (piv < 0) continue; for (int i = 0; i < N; i++) std::swap(M[r + 1][i], M[piv][i]); for (int i = 0; i < N; i++) std::swap(M[i][r + 1], M[i][piv]); for (int i = r + 2; i < N; i++) { if (M[i][r] == Ring()) continue; Ring a = M[r + 1][r], b = M[i][r], m00 = 1, m01 = 0, m10 = 0, m11 = 1; while (a != Ring() and b != Ring()) { if (a.val() > b.val()) { auto d = a.val() / b.val(); a -= b * d, m00 -= m10 * d, m01 -= m11 * d; } else { auto d = b.val() / a.val(); b -= a * d, m10 -= m00 * d, m11 -= m01 * d; } } if (a == Ring()) std::swap(a, b), std::swap(m00, m10), std::swap(m01, m11); for (int j = 0; j < N; j++) { Ring anew = M[r + 1][j] * m00 + M[i][j] * m01; Ring bnew = M[r + 1][j] * m10 + M[i][j] * m11; M[r + 1][j] = anew; M[i][j] = bnew; } assert(M[i][r] == 0); for (int j = 0; j < N; j++) { Ring anew = M[j][r + 1] * m11 - M[j][i] * m10; Ring bnew = -M[j][r + 1] * m01 + M[j][i] * m00; M[j][r + 1] = anew; M[j][i] = bnew; } } } } // det(M_0 + M_1 x), M0 , M1: n x n matrix of F_p // Complexity: O(n^3) // Verified: https://yukicoder.me/problems/no/1907 template <class T> std::vector<T> determinant_of_first_degree_poly_mat(std::vector<std::vector<T>> M0, std::vector<std::vector<T>> M1) { const int N = M0.size(); int multiply_by_x = 0; T detAdetBinv = 1; for (int p = 0; p < N; ++p) { int pivot = -1; for (int row = p; row < N; ++row) { if (M1[row][p] != T()) { pivot = row; break; } } if (pivot < 0) { ++multiply_by_x; if (multiply_by_x > N) return std::vector<T>(N + 1); for (int row = 0; row < p; ++row) { T v = M1[row][p]; M1[row][p] = 0; for (int i = 0; i < N; ++i) M0[i][p] -= v * M0[i][row]; } for (int i = 0; i < N; ++i) std::swap(M0[i][p], M1[i][p]); --p; continue; } if (pivot != p) { M1[pivot].swap(M1[p]); M0[pivot].swap(M0[p]); detAdetBinv *= -1; } T v = M1[p][p], vinv = v.inv(); detAdetBinv *= v; for (int col = 0; col < N; ++col) { M0[p][col] *= vinv; M1[p][col] *= vinv; } for (int row = 0; row < N; ++row) { if (row == p) continue; T v = M1[row][p]; for (int col = 0; col < N; ++col) { M0[row][col] -= M0[p][col] * v; M1[row][col] -= M1[p][col] * v; } } } for (auto &vec : M0) { for (auto &x : vec) x = -x; } matrix<T> tmp_mat(M0); hessenberg_reduction(tmp_mat); auto poly = characteristic_poly_of_hessenberg(tmp_mat); for (auto &x : poly) x *= detAdetBinv; poly.erase(poly.begin(), poly.begin() + multiply_by_x); poly.resize(N + 1); return poly; } int main() { int T; cin >> T; while (T--) { int N, P; cin >> N >> P; mint::set_mod(P); vector<vector<mint>> M0(N, vector<mint>(N)), M1(N, vector<mint>(N)); matrix<mint> mat(N, N); int M = 0; REP(i, N) REP(j, N) { int a; cin >> a; if (a >= 0) { M0[i][j] = a; } else { ++M; M1[i][j] = 1; } } // dbg(M0); // dbg(M1); auto f = determinant_of_first_degree_poly_mat(M0, M1); dbg(f); if (P == 2 and M <= N) { // cout << f.back() << '\n'; cout << f.at(M) << '\n'; } else { cout << 0 << '\n'; } } }