結果

問題 No.2255 Determinant Sum
ユーザー ecottea
提出日時 2023-03-24 22:46:08
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 25,980 bytes
コンパイル時間 5,951 ms
コンパイル使用メモリ 288,676 KB
最終ジャッジ日時 2025-02-11 17:35:35
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 7 WA * 16
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004004004004004LL;
double EPS = 1e-15;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
//
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
// Visual Studio
#ifdef _MSC_VER
#include "local.hpp"
// gcc
#else
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_list2D(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
#endif
//
/*
* MFPS() : O(1)
* f = 0
*
* MFPS(mint c0) : O(1)
* f = c0
*
* MFPS(mint c0, int n) : O(n)
* n f = c0
*
* MFPS(vm c) : O(n)
* f(z) = c[0] + c[1] z + ... + c[n - 1] z^(n-1)
*
* set_conv(vm(*CONV)(const vm&, const vm&)) : O(1)
* CONV
*
* c + f, f + c : O(1) f + g : O(n)
* f - c : O(1) c - f, f - g, -f : O(n)
* c * f, f * c : O(n) f * g : O(n log n) f * g_sp : O(n k)k : g
* f / c : O(n) f / g : O(n log n) f / g_sp : O(n k)k : g
*
* g_sp {, } vector
* : g(0) != 0
*
* MFPS f.inv(int d) : O(n log n)
* 1 / f mod z^d
* : f(0) != 0
*
* MFPS f.quotient(MFPS g) : O(n log n)
* MFPS f.reminder(MFPS g) : O(n log n)
* pair<MFPS, MFPS> f.quotient_remainder(MFPS g) : O(n log n)
* f g
* : g 0
*
* int f.deg(), int f.size() : O(1)
* f []
*
* MFPS::monomial(int d) : O(d)
* z^d
*
* mint f.assign(mint c) : O(n)
* f z c
*
* f.resize(int d) : O(1)
* mod z^d
*
* f.resize() : O(n)
*
*
* f >> d, f << d : O(n)
* d []
* z^d z^d
*
* MFPS power_mod(MFPS f, ll d, MFPS g) : O(m log m log d) m = deg g
* f(z)^d mod g(z)
*/
struct MFPS {
using SMFPS = vector<pair<int, mint>>;
int n; // + 1
vm c; //
inline static vm(*CONV)(const vm&, const vm&) = convolution; //
// 0
MFPS() : n(0) {}
MFPS(const mint& c0) : n(1), c({ c0 }) {}
MFPS(const int& c0) : n(1), c({ mint(c0) }) {}
MFPS(const mint& c0, int d) : n(d), c(n) { c[0] = c0; }
MFPS(const int& c0, int d) : n(d), c(n) { c[0] = c0; }
MFPS(const vm& c_) : n(sz(c_)), c(c_) {}
MFPS(const vi& c_) : n(sz(c_)), c(n) { rep(i, n) c[i] = c_[i]; }
//
MFPS(const MFPS& f) = default;
MFPS& operator=(const MFPS& f) = default;
MFPS& operator=(const mint& c0) { n = 1; c = { c0 }; return *this; }
//
bool operator==(const MFPS& g) const { return c == g.c; }
bool operator!=(const MFPS& g) const { return c != g.c; }
//
mint const& operator[](int i) const { return c[i]; }
mint& operator[](int i) { return c[i]; }
//
int deg() const { return n - 1; }
int size() const { return n; }
static void set_conv(vm(*CONV_)(const vm&, const vm&)) {
// verify : https://atcoder.jp/contests/tdpc/tasks/tdpc_fibonacci
CONV = CONV_;
}
//
MFPS& operator+=(const MFPS& g) {
if (n >= g.n) rep(i, g.n) c[i] += g.c[i];
else {
rep(i, n) c[i] += g.c[i];
repi(i, n, g.n - 1) c.push_back(g.c[i]);
n = g.n;
}
return *this;
}
MFPS operator+(const MFPS& g) const { return MFPS(*this) += g; }
//
MFPS& operator+=(const mint& sc) {
if (n == 0) { n = 1; c = { sc }; }
else { c[0] += sc; }
return *this;
}
MFPS operator+(const mint& sc) const { return MFPS(*this) += sc; }
friend MFPS operator+(const mint& sc, const MFPS& f) { return f + sc; }
MFPS& operator+=(const int& sc) { *this += mint(sc); return *this; }
MFPS operator+(const int& sc) const { return MFPS(*this) += sc; }
friend MFPS operator+(const int& sc, const MFPS& f) { return f + sc; }
//
MFPS& operator-=(const MFPS& g) {
if (n >= g.n) rep(i, g.n) c[i] -= g.c[i];
else {
rep(i, n) c[i] -= g.c[i];
repi(i, n, g.n - 1) c.push_back(-g.c[i]);
n = g.n;
}
return *this;
}
MFPS operator-(const MFPS& g) const { return MFPS(*this) -= g; }
//
MFPS& operator-=(const mint& sc) { *this += -sc; return *this; }
MFPS operator-(const mint& sc) const { return MFPS(*this) -= sc; }
friend MFPS operator-(const mint& sc, const MFPS& f) { return -(f - sc); }
MFPS& operator-=(const int& sc) { *this += -sc; return *this; }
MFPS operator-(const int& sc) const { return MFPS(*this) -= sc; }
friend MFPS operator-(const int& sc, const MFPS& f) { return -(f - sc); }
//
MFPS operator-() const { return MFPS(*this) *= -1; }
//
MFPS& operator*=(const mint& sc) { rep(i, n) c[i] *= sc; return *this; }
MFPS operator*(const mint& sc) const { return MFPS(*this) *= sc; }
friend MFPS operator*(const mint& sc, const MFPS& f) { return f * sc; }
MFPS& operator*=(const int& sc) { *this *= mint(sc); return *this; }
MFPS operator*(const int& sc) const { return MFPS(*this) *= sc; }
friend MFPS operator*(const int& sc, const MFPS& f) { return f * sc; }
//
MFPS& operator/=(const mint& sc) { *this *= sc.inv(); return *this; }
MFPS operator/(const mint& sc) const { return MFPS(*this) /= sc; }
MFPS& operator/=(const int& sc) { *this /= mint(sc); return *this; }
MFPS operator/(const int& sc) const { return MFPS(*this) /= sc; }
//
MFPS& operator*=(const MFPS& g) { c = CONV(c, g.c); n = sz(c); return *this; }
MFPS operator*(const MFPS& g) const { return MFPS(*this) *= g; }
//
MFPS inv(int d) const {
// https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
// verify : https://judge.yosupo.jp/problem/inv_of_formal_power_series
//
// 1 / f mod x^d
// f g = 1 (mod x^d)
// g
// d 1, 2, 4, ..., 2^i
//
// d = 1
// g = 1 / f[0] (mod x^1)
//
//
//
// g = h (mod x^k)
//
// g mod x^(2 k)
//
// g - h = 0 (mod x^k)
// ⇒ (g - h)^2 = 0 (mod x^(2 k))
// ⇔ g^2 - 2 g h + h^2 = 0 (mod x^(2 k))
// ⇒ f g^2 - 2 f g h + f h^2 = 0 (mod x^(2 k))
// ⇔ g - 2 h + f h^2 = 0 (mod x^(2 k))  (f g = 1 (mod x^d) )
// ⇔ g = (2 - f h) h (mod x^(2 k))
//
//
// d <= 2^i i d
Assert(c[0] != 0);
MFPS g(c[0].inv());
for (int k = 1; k < d; k *= 2) {
g = (2 - *this * g) * g;
g.resize(2 * k);
}
return g.resize(d);
}
MFPS& operator/=(const MFPS& g) { return *this *= g.inv(max(n, g.n)); }
MFPS operator/(const MFPS& g) const { return MFPS(*this) /= g; }
//
MFPS quotient(const MFPS& g) const {
// : https://nyaannyaan.github.io/library/fps/formal-power-series.hpp
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
//
// f(x) = g(x) q(x) + r(x) q(x)
// f n - 1, g m - 1 (n >= m)
// q n - mr m - 2
//
// f^R f
// f^R(x) := f(1/x) x^(n-1)
//
//
// x → 1/x
// f(1/x) = g(1/x) q(1/x) + r(1/x)
// ⇔ f(1/x) x^(n-1) = g(1/x) q(1/x) x^(n-1) + r(1/x) x^(n-1)
// ⇔ f(1/x) x^(n-1) = g(1/x) x^(m-1) q(1/x) x^(n-m) + r(1/x) x^(m-2) x^(n-m+1)
// ⇔ f^R(x) = g^R(x) q^R(x) + r^R(x) x^(n-m+1)
// ⇒ f^R(x) = g^R(x) q^R(x) (mod x^(n-m+1))
// ⇒ q^R(x) = f^R(x) / g^R(x) (mod x^(n-m+1))
//
//
// q mod x^(n-m+1)
// q n - m q
if (n < g.n) return MFPS();
return ((this->rev() / g.rev()).resize(n - g.n + 1)).rev();
}
MFPS reminder(const MFPS& g) const {
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
return (*this - this->quotient(g) * g).resize(g.n - 1);
}
pair<MFPS, MFPS> quotient_remainder(const MFPS& g) const {
// verify : https://judge.yosupo.jp/problem/division_of_polynomials
pair<MFPS, MFPS> res;
res.first = this->quotient(g);
res.second = (*this - res.first * g).resize(g.n - 1);
return res;
}
//
MFPS& operator*=(const SMFPS& g) {
// g
auto it0 = g.begin();
mint g0 = 0;
if (it0->first == 0) {
g0 = it0->second;
it0++;
}
// DP
repir(i, n - 1, 0) {
//
for (auto it = it0; it != g.end(); it++) {
int j; mint gj;
tie(j, gj) = *it;
if (i + j >= n) break;
c[i + j] += c[i] * gj;
}
//
c[i] *= g0;
}
return *this;
}
MFPS operator*(const SMFPS& g) const { return MFPS(*this) *= g; }
//
MFPS& operator/=(const SMFPS& g) {
// g
auto it0 = g.begin();
Assert(it0->first == 0 && it0->second != 0);
mint g0_inv = it0->second.inv();
it0++;
// DP
rep(i, n) {
//
c[i] *= g0_inv;
//
for (auto it = it0; it != g.end(); it++) {
int j; mint gj;
tie(j, gj) = *it;
if (i + j >= n) break;
c[i + j] -= c[i] * gj;
}
}
return *this;
}
MFPS operator/(const SMFPS& g) const { return MFPS(*this) /= g; }
//
MFPS rev() const { MFPS h = *this; reverse(all(h.c)); return h; }
//
static MFPS monomial(int d) {
MFPS mono(0, d + 1);
mono[d] = 1;
return mono;
}
//
MFPS& resize() {
// 0
while (n > 0 && c[n - 1] == 0) {
c.pop_back();
n--;
}
return *this;
}
// x^d
MFPS& resize(int d) {
n = d;
c.resize(d);
return *this;
}
//
mint assign(const mint& x) const {
mint val = 0;
repir(i, n - 1, 0) val = val * x + c[i];
return val;
}
//
MFPS& operator>>=(int d) {
n += d;
c.insert(c.begin(), d, 0);
return *this;
}
MFPS& operator<<=(int d) {
n -= d;
if (n <= 0) { c.clear(); n = 0; }
else c.erase(c.begin(), c.begin() + d);
return *this;
}
MFPS operator>>(int d) const { return MFPS(*this) >>= d; }
MFPS operator<<(int d) const { return MFPS(*this) <<= d; }
//
friend MFPS power_mod(const MFPS& f, ll d, const MFPS& g) {
MFPS res(1), pow2(f);
while (d > 0) {
if (d & 1LL) res = (res * pow2).reminder(g);
pow2 = (pow2 * pow2).reminder(g);
d /= 2;
}
return res;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const MFPS& f) {
if (f.n == 0) os << 0;
else {
rep(i, f.n) {
os << f[i].val() << "z^" << i;
if (i < f.n - 1) os << " + ";
}
}
return os;
}
#endif
};
//
/*
* Matrix<T>(int m, int n) : O(m n)
* m * n
*
* Matrix<T>(int n) : O(n^2)
* n * n
*
* Matrix<T>(vvT a) : O(m n)
* a
*
* bool empty() : O(1)
*
*
* A + B : O(m n)
* m * n A, B += 使
*
* A - B : O(m n)
* m * n A, B -= 使
*
* c * A A * c : O(m n)
* m * n A c *= 使
*
* A * x : O(m n)
* m * n A n x
*
* x * A : O(m n)
* m x m * n A
*
* A * B : O(l m n)
* l * m A m * n B
*
* Mat pow(ll d) : O(n^3 log d)
* d
*/
template <class T>
struct Matrix {
int m, n; // m n
vector<vector<T>> v; //
//
Matrix() : m(0), n(0) {}
Matrix(const int& m_, const int& n_) : m(m_), n(n_), v(m_, vector<T>(n_)) {}
Matrix(const int& n_) : m(n_), n(n_), v(n_, vector<T>(n_)) { rep(i, n) v[i][i] = T(1); }
Matrix(const vector<vector<T>>& a) : m(sz(a)), n(sz(a[0])), v(a) {}
//
Matrix(const Matrix& b) = default;
Matrix& operator=(const Matrix& b) = default;
//
friend istream& operator>>(istream& is, Matrix& a) {
rep(i, a.m) rep(j, a.n) is >> a.v[i][j];
return is;
}
//
vector<T> const& operator[](int i) const { return v[i]; }
vector<T>& operator[](int i) { return v[i]; }
//
bool empty() { return min(m, n) == 0; }
//
bool operator==(const Matrix& b) const { return m == b.m && n == b.n && v == b.v; }
bool operator!=(const Matrix& b) const { return !(*this == b); }
//
Matrix& operator+=(const Matrix& b) {
rep(i, m) rep(j, n) v[i][j] += b.v[i][j];
return *this;
}
Matrix& operator-=(const Matrix& b) {
rep(i, m) rep(j, n) v[i][j] -= b.v[i][j];
return *this;
}
Matrix& operator*=(const T& c) {
rep(i, m) rep(j, n) v[i][j] *= c;
return *this;
}
Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; }
Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; }
Matrix operator*(const T& c) const { return Matrix(*this) *= c; }
friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; }
Matrix operator-() const { return Matrix(*this) *= T(-1); }
// : O(m n)
vector<T> operator*(const vector<T>& x) const {
vector<T> y(m);
rep(i, m) rep(j, n) y[i] += v[i][j] * x[j];
return y;
}
// : O(m n)
friend vector<T> operator*(const vector<T>& x, const Matrix& a) {
vector<T> y(a.n);
rep(i, a.m) rep(j, a.n) y[j] += x[i] * a.v[i][j];
return y;
}
// O(n^3)
Matrix operator*(const Matrix& b) const {
// verify : https://judge.yosupo.jp/problem/matrix_product
Matrix res(m, b.n);
rep(i, res.m) rep(j, res.n) rep(k, n) res.v[i][j] += v[i][k] * b.v[k][j];
return res;
}
Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; }
// O(n^3 log d)
Matrix pow(ll d) const {
Matrix res(n), pow2 = *this;
while (d > 0) {
if ((d & 1) != 0) res *= pow2;
pow2 *= pow2;
d /= 2;
}
return res;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Matrix& a) {
rep(i, a.m) {
os << "[";
rep(j, a.n) os << a.v[i][j] << (j < a.n - 1 ? " " : "]");
if (i < a.m - 1) os << "\n";
}
return os;
}
#endif
};
//O(n^3)
/*
* n mat
*/
template <class T>
T determinant(const Matrix<T>& mat) {
// verify : https://judge.yosupo.jp/problem/matrix_det
int n = mat.n; auto v = mat.v;
// (i, j)i j
int i = 0, j = 0;
//
T res(1);
while (i < n && j < n) {
// 0
int i2 = i;
while (i2 < n && v[i2][j] == T(0)) i2++;
// 0
if (i2 == n) return T(0);
// i
// -1
if (i2 != i) {
swap(v[i], v[i2]);
res *= T(-1);
}
// v[i][j] 1 v[i][j]
// v[i][j]
res *= v[i][j];
T vij_inv = T(1) / v[i][j];
repi(j2, j, n - 1) v[i][j2] *= vij_inv;
// v[i][j] 0 i
//
repi(i2, i + 1, n - 1) {
T mul = v[i2][j];
repi(j2, j, n - 1) v[i2][j2] -= v[i][j2] * mul;
}
//
i++; j++;
}
return res;
}
//O(n)
/*
* f'(x)
*/
MFPS derivative(const MFPS& f) {
// verify : https://judge.yosupo.jp/problem/log_of_formal_power_series
MFPS res;
repi(i, 1, f.n - 1) res.c.push_back(f[i] * i);
res.n = sz(res.c);
return res;
}
//O(n (log n)^2)
/*
* Πi∈[0..n) (z - x[i])
*
* i x[0..n) n - i
*/
MFPS expand(const vm& x) {
// verify : https://atcoder.jp/contests/abc231/tasks/abc231_g
int n = sz(x);
vector<MFPS> f(n);
rep(i, n) f[i] = MFPS(vm({ -x[i], 1 }));
// 2
for (int k = 1; k < n; k *= 2) {
for (int i = 0; i + k < n; i += 2 * k) {
f[i] *= f[i + k];
}
}
return f[0];
}
//O(n (log n)^2)
/*
* num[i] / dnm[i] [] n (, )
*/
pair<MFPS, MFPS> reduction(vector<MFPS> num, vector<MFPS> dnm) {
// verify : https://judge.yosupo.jp/problem/polynomial_interpolation
int n = sz(num);
// 2
for (int k = 1; k < n; k *= 2) {
for (int i = 0; i + k < n; i += 2 * k) {
num[i] = num[i] * dnm[i + k] + num[i + k] * dnm[i];
dnm[i] *= dnm[i + k];
}
}
return make_pair(num[0], dnm[0]);
}
//O(m (log m)^2 + n log n)
/*
* n f f(x[0..m))
*/
vm multipoint_evaluation(const MFPS& f, const vm& x) {
// : https://37zigen.com/multipoint-evaluation/
// verify : https://judge.yosupo.jp/problem/multipoint_evaluation
int m = sz(x);
vm y(m);
int m2 = 1 << (msb(m - 1) + 1);
// sp : (x - x[i]) 2
vector<MFPS> sp(m2 * 2);
repi(i, m2, m2 + m - 1) sp[i] = MFPS(vm({ -x[i - m2], 1 }));
repi(i, m2 + m, 2 * m2 - 1) sp[i] = MFPS(1);
repir(i, m2 - 1, 1) sp[i] = sp[2 * i] * sp[2 * i + 1];
// sr : f sp[i]
vector<MFPS> sr(m2 * 2);
sr[1] = f.reminder(sp[1]);
repi(i, 2, m2 + m - 1) sr[i] = sr[i / 2].reminder(sp[i]);
// sr (x - x[i]) f(x[i])
rep(i, m) y[i] = sr[m2 + i][0];
return y;
}
//O(n (log n)^2)
/*
* n f(x[i]) = y[i] n - 1 f(x)
*
* ,,,
*/
MFPS lagrange_interpolation(const vm& x, const vm& y) {
// : https://37zigen.com/lagrange-interpolation/
// verify : https://judge.yosupo.jp/problem/polynomial_interpolation
//
//
// f(x) = Σi=[0..n) y[i] Πj≠i (x - x[j])/(x[i] - x[j])
//
//
//
// g(x) = Πi=[0..n) (x - x[i])
// f(x)
// f(x) = g(x) Σi=[0..n) y[i] / ( g'(x[i]) (x - x[i]) )
//
//
// g(x) O(n (log n)^2)
// g'(x[i]) O(n (log n)^2)
//
// a[i] = y[i] / g'(x[i])
//
// f(x) / g(x) = Σi=[0..n) a[i] / (x - x[i])
// O(n (log n)^2)
int n = sz(x);
MFPS g = expand(x);
g = derivative(g);
vm b = multipoint_evaluation(g, x);
vector<MFPS> num(n), dnm(n);
rep(i, n) {
num[i] = MFPS(y[i] / b[i]);
dnm[i] = MFPS(vm({ -x[i], 1 }));
}
return reduction(num, dnm).first;
}
void solve() {
int n, p;
cin >> n >> p;
vvi a(n, vi(n));
cin >> a;
if (p != 2) {
cout << 0 << endl;
return;
}
vi cnt_x(n), cnt_y(n);
rep(i, n) rep(j, n) {
cnt_x[i] += a[i][j] == -1;
cnt_y[j] += a[i][j] == -1;
}
rep(i, n) if (cnt_x[i] >= 2) {
cout << 0 << endl;
return;
}
rep(i, n) if (cnt_y[i] >= 2) {
cout << 0 << endl;
return;
}
vm x(n + 1);
rep(t, n + 1) x[t] = t;
vm y(n + 1);
rep(t, n + 1) {
Matrix<mint> mat(n, n);
rep(i, n) rep(j, n) {
if (a[i][j] != -1) mat[i][j] = a[i][j];
else mat[i][j] = t;
}
y[t] = determinant(mat);
}
auto f = lagrange_interpolation(x, y);
dump(x); dump(y); dump(f);
repir(i, n, 0) {
if (f[i] == 0) continue;
cout << f[i].val() % 2 << endl;
return;
}
cout << 0 << endl;
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int t;
cin >> t; //
// t = 1; //
while (t--) {
dump("------------------------------");
solve();
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0