結果

問題 No.2255 Determinant Sum
ユーザー KazunKazun
提出日時 2023-03-24 22:55:13
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 9,399 bytes
コンパイル時間 174 ms
コンパイル使用メモリ 81,988 KB
実行使用メモリ 76,884 KB
最終ジャッジ日時 2024-09-18 17:26:13
合計ジャッジ時間 2,379 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 40 ms
55,936 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 AC 78 ms
76,704 KB
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 AC 71 ms
76,316 KB
testcase_11 AC 60 ms
76,864 KB
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 AC 62 ms
76,316 KB
testcase_19 AC 60 ms
76,152 KB
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

from copy import deepcopy

class Modulo_Matrix():
    __slots__=("ele","row","col","size")

    #入力
    def __init__(self,M):
        """ 行列 M の定義

        M: 行列
        ※ Mod: 法はグローバル変数から指定
        """

        self.ele=[[x%Mod for x in X] for X in M]
        R=len(M)
        if R!=0:
            C=len(M[0])
        else:
            C=0
        self.row=R
        self.col=C
        self.size=(R,C)

    #出力
    def __str__(self):
        return "["+"\n".join(map(str,self.ele))+"]"

    def __repr__(self):
        return str(self)

    #+,-
    def __pos__(self):
        return self

    def __neg__(self):
        return self.__scale__(-1)

    #加法
    def __add__(self,other):
        M=self.ele; N=other.ele

        L=[[0]*self.col for _ in range(self.row)]
        for i in range(self.row):
            Li,Mi,Ni=L[i],M[i],N[i]
            for j in range(self.col):
                Li[j]=Mi[j]+Ni[j]
        return Modulo_Matrix(L)

    def __iadd__(self,other):
        M=self.ele; N=other.ele

        for i in range(self.row):
            Mi,Ni=M[i],N[i]
            for j in range(self.col):
                Mi[j]+=Ni[j]
                Mi[j]%=Mod
        return self

    #減法
    def __sub__(self,other):
        M=self.ele; N=other.ele

        L=[[0]*self.col for _ in range(self.row)]
        for i in range(self.row):
            Li,Mi,Ni=L[i],M[i],N[i]
            for j in range(self.col):
                Li[j]=Mi[j]-Ni[j]
        return Modulo_Matrix(L)

    def __isub__(self,other):
        M=self.ele; N=other.ele

        for i in range(self.row):
            Mi,Ni=M[i],N[i]
            for j in range(self.col):
                Mi[j]-=Ni[j]
                Mi[j]%=Mod
        return self

    #乗法
    def __mul__(self,other):
        if isinstance(other,Modulo_Matrix):
            assert self.col==other.row, "左側の列と右側の行が一致しません.({},{})".format(self.size,other.size)

            M=self.ele; N=other.ele
            E=[[0]*other.col for _ in range(self.row)]

            for i in range(self.row):
                Ei,Mi=E[i],M[i]
                for k in range(self.col):
                    m_ik,Nk=Mi[k],N[k]
                    for j in range(other.col):
                        Ei[j]+=m_ik*Nk[j]
                        Ei[j]%=Mod
            return Modulo_Matrix(E)
        elif isinstance(other,int):
            return self.__scale__(other)

    def __rmul__(self,other):
        if isinstance(other,int):
            return self.__scale__(other)

    def inverse(self):
        assert self.row==self.col,"正方行列ではありません."

        M=self
        N=M.row
        R=[[1 if i==j else 0 for j in range(N)] for i in range(N)]
        T=deepcopy(M.ele)

        for j in range(N):
            if T[j][j]==0:
                for i in range(j+1,N):
                    if T[i][j]:
                        break
                else:
                    assert 0, "正則行列ではありません"

                T[j],T[i]=T[i],T[j]
                R[j],R[i]=R[i],R[j]
            Tj,Rj=T[j],R[j]
            inv=pow(Tj[j],Mod-2,Mod)
            for k in range(N):
                Tj[k]*=inv; Tj[k]%=Mod
                Rj[k]*=inv; Rj[k]%=Mod
            for i in range(N):
                if i==j: continue
                c=T[i][j]
                Ti,Ri=T[i],R[i]
                for k in range(N):
                    Ti[k]-=Tj[k]*c; Ti[k]%=Mod
                    Ri[k]-=Rj[k]*c; Ri[k]%=Mod
        return Modulo_Matrix(R)

    #スカラー倍
    def __scale__(self,r):
        M=self.ele
        r%=Mod
        L=[[(r*M[i][j])%Mod for j in range(self.col)] for i in range(self.row)]
        return Modulo_Matrix(L)

    #累乗
    def __pow__(self,n):
        assert self.row==self.col, "正方行列ではありません."

        r=self.col

        def __mat_mul(A,B):
            E=[[0]*r for _ in range(r)]
            for i in range(r):
                a=A[i]; e=E[i]
                for k in range(r):
                    b=B[k]
                    for j in range(r):
                        e[j]+=a[k]*b[j]
                        e[j]%=Mod
            return E

        X=deepcopy(self.ele)
        E=[[1 if i==j else 0 for j in range(r)] for i in range(r)]

        sgn=1 if n>=0 else -1
        n=abs(n)

        while True:
            if n&1:
                E=__mat_mul(E,X)
            n>>=1
            if n:
                X=__mat_mul(X,X)
            else:
                break

        if sgn==1:
            return Modulo_Matrix(E)
        else:
            return Modulo_Matrix(E).inverse()

    #等号
    def __eq__(self,other):
        return self.ele==other.ele

    #不等号
    def __neq__(self,other):
        return not(self==other)

    #転置
    def transpose(self):
        return Modulo_Matrix(list(map(list,zip(*self.ele))))

    #行基本変形
    def row_reduce(self):
        M=self
        (R,C)=M.size
        T=[]

        for i in range(R):
            U=[]
            for j in range(C):
                U.append(M.ele[i][j])
            T.append(U)

        I=0
        for J in range(C):
            if T[I][J]==0:
                for i in range(I+1,R):
                    if T[i][J]!=0:
                        T[i],T[I]=T[I],T[i]
                        break

            if T[I][J]!=0:
                u=T[I][J]
                u_inv=pow(u,Mod-2,Mod)
                for j in range(C):
                    T[I][j]*=u_inv
                    T[I][j]%=Mod

                for i in range(R):
                    if i!=I:
                        v=T[i][J]
                        for j in range(C):
                            T[i][j]-=v*T[I][j]
                            T[i][j]%=Mod
                I+=1
                if I==R:
                    break

        return Modulo_Matrix(T)

    #列基本変形
    def column_reduce(self):
        M=self
        (R,C)=M.size

        T=[]
        for i in range(R):
            U=[]
            for j in range(C):
                U.append(M.ele[i][j])
            T.append(U)

        J=0
        for I in range(R):
            if T[I][J]==0:
                for j in range(J+1,C):
                    if T[I][j]!=0:
                        for k in range(R):
                            T[k][j],T[k][J]=T[k][J],T[k][j]
                        break

            if T[I][J]!=0:
                u=T[I][J]
                u_inv=pow(u,Mod-2,Mod)
                for i in range(R):
                    T[i][J]*=u_inv
                    T[i][J]%=Mod

                for j in range(C):
                    if j!=J:
                        v=T[I][j]
                        for i in range(R):
                            T[i][j]-=v*T[i][J]
                            T[i][j]%=Mod
                J+=1
                if J==C:
                    break

        return Modulo_Matrix(T)

    #行列の階数
    def rank(self):
        M=self.row_reduce()
        (R,C)=M.size
        T=M.ele

        rnk=0
        for i in range(R):
            f=False
            for j in range(C):
                if T[i][j]!=0:
                    f=True
                    break

            if f:
                rnk+=1
            else:
                break

        return rnk

    #行の結合
    def row_union(self,other):
        return Modulo_Matrix(self.ele+other.ele)

    #列の結合
    def column_union(self,other):
        E=[]
        for i in range(self.row):
            E.append(self.ele[i]+other.ele[i])

        return Modulo_Matrix(E)

    def __getitem__(self,index):
        if isinstance(index, int):
            return self.ele[index]
        else:
            return self.ele[index[0]][index[1]]

    def __setitem__(self,index,val):
        assert isinstance(index,tuple) and len(index)==2
        self.ele[index[0]][index[1]]=val

#正方行列?
def Is_Square(M):
    return M.row==M.col

def Determinant(M):
    """ 正方行列 M の行列式 (素数 mod) を求める."""

    assert Is_Square(M)

    N=M.row
    T=deepcopy(M.ele)
    det=1

    for j in range(N):
        if T[j][j]==0:
            for i in range(j+1,N):
                if T[i][j]:
                    break
            else:
                return 0
            T[j],T[i]=T[i],T[j]
            det=-det
        Tj=T[j]
        inv=pow(Tj[j],Mod-2,Mod)
        for i in range(j+1,N):
            Ti=T[i]
            c=-inv*Ti[j]%Mod
            for k in range(N):
                Ti[k]+=c*Tj[k]
                Ti[k]%=Mod

    for i in range(N):
        det*=T[i][i]
        det%=Mod
    return det

#==================================================
def solve():
    N,P=map(int,input().split())
    global Mod; Mod=P

    flag=0
    A=[None]*N
    for i in range(N):
        A[i]=list(map(int,input().split()))
        flag|=(-1 in A[i])

    if not flag:
        return Determinant(Modulo_Matrix(A))

    if P!=2:
        return 0
    else:
        E=set()
        for i in range(N):
            if A[i].count(-1)!=1:
                return 0
            j=A[i].index(-1)
            if j in E:
                return 0
            E.add(j)
        return 1

#==================================================
import sys
input=sys.stdin.readline
write=sys.stdout.write

T=int(input())
write("\n".join(map(str,[solve() for t in range(T)])))
0