結果

問題 No.2311 [Cherry 5th Tune] Cherry Month
ユーザー square1001square1001
提出日時 2023-03-25 12:16:15
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 5,822 bytes
コンパイル時間 1,803 ms
コンパイル使用メモリ 99,520 KB
実行使用メモリ 52,976 KB
最終ジャッジ日時 2024-12-15 18:58:39
合計ジャッジ時間 177,425 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
13,764 KB
testcase_01 AC 2 ms
13,644 KB
testcase_02 TLE -
testcase_03 AC 90 ms
25,592 KB
testcase_04 TLE -
testcase_05 TLE -
testcase_06 TLE -
testcase_07 AC 92 ms
27,580 KB
testcase_08 AC 131 ms
34,816 KB
testcase_09 AC 133 ms
37,932 KB
testcase_10 TLE -
testcase_11 AC 142 ms
36,332 KB
testcase_12 TLE -
testcase_13 AC 153 ms
39,168 KB
testcase_14 AC 3,379 ms
38,784 KB
testcase_15 AC 181 ms
38,932 KB
testcase_16 TLE -
testcase_17 TLE -
testcase_18 TLE -
testcase_19 AC 157 ms
38,912 KB
testcase_20 AC 146 ms
26,752 KB
testcase_21 TLE -
testcase_22 TLE -
testcase_23 AC 151 ms
46,732 KB
testcase_24 AC 142 ms
26,624 KB
testcase_25 AC 157 ms
47,348 KB
testcase_26 AC 153 ms
52,976 KB
testcase_27 TLE -
testcase_28 TLE -
testcase_29 TLE -
testcase_30 TLE -
testcase_31 TLE -
testcase_32 TLE -
testcase_33 TLE -
testcase_34 TLE -
testcase_35 TLE -
testcase_36 TLE -
testcase_37 TLE -
testcase_38 TLE -
testcase_39 TLE -
testcase_40 TLE -
testcase_41 TLE -
testcase_42 TLE -
testcase_43 AC 549 ms
30,720 KB
testcase_44 AC 166 ms
27,544 KB
testcase_45 TLE -
testcase_46 AC 149 ms
20,808 KB
testcase_47 AC 298 ms
27,616 KB
testcase_48 AC 140 ms
24,736 KB
testcase_49 AC 170 ms
24,704 KB
testcase_50 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;

class query {
public:
	int tp, t, x, y;
	query() : tp(-1), t(-1), x(-1), y(-1) {}
	query(int tp_, int t_, int x_, int y_) : tp(tp_), t(t_), x(x_), y(y_) {}
	bool operator<(const query& q) const {
		return t < q.t;
	}
};

vector<long long> solve(int N, int M, int Q, const vector<long long>& TA, const vector<int>& TP, const vector<int>& X, const vector<int>& Y, const vector<int>& S, const vector<int>& I) {
	// step #1. preparation
	vector<query> qs(M + Q);
	for (int i = 0; i < M; i++) {
		qs[i] = query(TP[i], i * 2 + 1, X[i], Y[i]);
	}
	for (int i = 0; i < Q; i++) {
		qs[M + i] = query(5, S[i] * 2, I[i], i);
	}
	sort(qs.begin(), qs.end());

	// step #2. renumber vertices
	vector<vector<int> > group(N);
	vector<int> root(N), id(N), idl(N), idr(N);
	for (int i = 0; i < N; i++) {
		group[i] = { i };
		root[i] = i;
		id[i] = i;
	}
	for (query q : qs) {
		if (q.tp == 1) {
			int rx = root[q.x];
			int ry = root[q.y];
			if (rx != ry) {
				if (group[rx].size() < group[ry].size()) {
					swap(rx, ry);
				}
				group[rx].insert(group[rx].end(), group[ry].begin(), group[ry].end());
				int delta = idr[rx] - idl[rx];
				for (int j : group[ry]) {
					id[j] += delta;
				}
				idl[ry] += delta;
				idr[ry] += delta;
				for (int j : group[ry]) {
					root[j] = rx;
				}
			}
		}
	}
	for (query &q : qs) {
		if (q.tp == 1) {
			q.x = id[q.x];
			q.y = id[q.y];
		}
		else {
			q.x = id[q.x];
		}
	}
	vector<long long> A(N);
	for (int i = 0; i < N; i++) {
		A[id[i]] = TA[i];
	}

	// step #3. find left/right of update queries
	for (int i = 0; i < N; i++) {
		group[i] = { i };
		root[i] = i;
		idl[i] = i;
		idr[i] = i + 1;
	}
	vector<int> l(M + Q, -1), r(M + Q, -1);
	for (int i = 0; i < M + Q; i++) {
		query q = qs[i];
		if (q.tp == 1) {
			int rx = root[q.x];
			int ry = root[q.y];
			if (rx != ry) {
				if (group[rx].size() < group[ry].size()) {
					swap(rx, ry);
				}
				group[rx].insert(group[rx].end(), group[ry].begin(), group[ry].end());
				idl[rx] = min(idl[rx], idl[ry]);
				idr[rx] = max(idr[rx], idr[ry]);
				for (int j : group[ry]) {
					root[j] = rx;
				}
			}
		}
		if (q.tp == 4) {
			l[i] = idl[root[q.x]];
			r[i] = idr[root[q.x]];
		}
	}

	// step #4. find all high-degree vertices
	vector<int> deg(N, 0);
	for (query q : qs) {
		if (q.tp == 1) {
			deg[q.x] += 1;
			deg[q.y] += 1;
		}
	}
	int Z = 0;
	vector<int> vert_id(N, -1);
	for (int i = 0; i < N; i++) {
		if (1LL * deg[i] * deg[i] >= N) {
			vert_id[i] = Z;
			Z += 1;
		}
	}
	vector<vector<int> > flag(N, vector<int>(Z, -1));

	// step #5. binary indexed tree
	vector<long long> bit(N + 1);
	auto add = [&](int pos, int val) {
		for (int i = pos + 1; i <= N; i += i & (-i)) {
			bit[i] += val;
		}
	};
	auto getsum = [&](int pos) {
		long long answer = 0;
		for (int i = pos; i >= 1; i -= i & (-i)) {
			answer += bit[i];
		}
		return answer;
	};

	// step #6. process queries
	vector<vector<int> > g(N);
	vector<long long> val(N, 0), answer(Q, -1);
	vector<vector<long long> > bigval(M + Q + 1);
	bigval[0] = vector<long long>(Z, 0);
	for (int i = 0; i < M + Q; i++) {
		bigval[i + 1] = bigval[i];
		query q = qs[i];
		if (q.tp == 1) {
			if (vert_id[q.x] == -1) {
				g[q.x].push_back(q.y);
			}
			else if (flag[q.y][vert_id[q.x]] == -1) {
				flag[q.y][vert_id[q.x]] = i;
			}
			if (vert_id[q.y] == -1) {
				g[q.y].push_back(q.x);
			}
			else if (flag[q.x][vert_id[q.y]] == -1) {
				flag[q.x][vert_id[q.y]] = i;
			}
		}
		if (q.tp == 2) {
			val[q.x] += q.y;
		}
		if (q.tp == 3) {
			if (vert_id[q.x] == -1) {
				for (int j : g[q.x]) {
					val[j] += q.y;
				}
			}
			else {
				bigval[i + 1][vert_id[q.x]] += q.y;
			}
			val[q.x] += q.y;
		}
		if (q.tp == 4) {
			add(l[i], q.y);
			add(r[i], -q.y);
		}
		if (q.tp == 5) {
			long long subval = val[q.x];
			for (int j = 0; j < Z; j++) {
				if (flag[q.x][j] != -1) {
					subval += bigval[i + 1][j] - bigval[flag[q.x][j]][j];
				}
			}
			subval += getsum(q.x + 1);
			answer[q.y] = max(A[q.x] - subval, 0LL);
		}
	}

	return answer;
}

vector<long long> solve_easy(int N, int M, int Q, const vector<long long>& TA, const vector<int>& TP, const vector<int>& X, const vector<int>& Y, const vector<int>& S, const vector<int>& I) {
	// step #1. preparation
	vector<query> qs(M + Q);
	for (int i = 0; i < M; i++) {
		qs[i] = query(TP[i], i * 2 + 1, X[i], Y[i]);
	}
	for (int i = 0; i < Q; i++) {
		qs[M + i] = query(5, S[i] * 2, I[i], i);
	}
	sort(qs.begin(), qs.end());

	// step #2. renumber vertices
	vector<long long> A = TA;
	vector<long long> answer(Q, -1);
	vector<vector<int> > g(N);
	for (query q : qs) {
		if (q.tp == 1) {
			g[q.x].push_back(q.y);
			g[q.y].push_back(q.x);
		}
		if (q.tp == 2) {
			A[q.x] = max(A[q.x] - q.y, 0LL);
		}
		if (q.tp == 3) {
			A[q.x] = max(A[q.x] - q.y, 0LL);
			for (int i : g[q.x]) {
				A[i] = max(A[i] - q.y, 0LL);
			}
		}
		if (q.tp == 4) {
			vector<bool> vis(N, false);
			auto dfs = [&](auto& self, int pos) -> void {
				vis[pos] = true;
				A[pos] = max(A[pos] - q.y, 0LL);
				for (int i : g[pos]) {
					if (!vis[i]) {
						self(self, i);
					}
				}
			};
			dfs(dfs, q.x);
		}
		if (q.tp == 5) {
			answer[q.y] = A[q.x];
		}
	}

	return answer;
}

int main() {
	cin.tie(0);
	ios::sync_with_stdio(false);
	int N;
	cin >> N;
	vector<long long> A(N);
	for (int i = 0; i < N; i++) {
		cin >> A[i];
	}
	int M;
	cin >> M;
	vector<int> TP(M), X(M), Y(M);
	for (int i = 0; i < M; i++) {
		cin >> TP[i] >> X[i] >> Y[i];
		X[i] -= 1;
		Y[i] -= (TP[i] == 1 ? 1 : 0);
	}
	int Q;
	cin >> Q;
	vector<int> S(Q), I(Q);
	for (int i = 0; i < Q; i++) {
		cin >> S[i] >> I[i];
		I[i] -= 1;
	}
	vector<long long> answer = solve_easy(N, M, Q, A, TP, X, Y, S, I);
	for (int i = 0; i < Q; i++) {
		cout << answer[i] << '\n';
	}

	return 0;
}
0