結果
問題 | No.2237 Xor Sum Hoge |
ユーザー | koba-e964 |
提出日時 | 2023-03-26 17:43:17 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 1,518 ms / 10,000 ms |
コード長 | 10,087 bytes |
コンパイル時間 | 12,393 ms |
コンパイル使用メモリ | 383,956 KB |
実行使用メモリ | 11,008 KB |
最終ジャッジ日時 | 2024-09-19 09:54:47 |
合計ジャッジ時間 | 66,767 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1,470 ms
11,008 KB |
testcase_01 | AC | 1,442 ms
10,112 KB |
testcase_02 | AC | 1,449 ms
10,112 KB |
testcase_03 | AC | 1,470 ms
10,112 KB |
testcase_04 | AC | 1,455 ms
9,984 KB |
testcase_05 | AC | 1,482 ms
9,984 KB |
testcase_06 | AC | 1,497 ms
10,112 KB |
testcase_07 | AC | 1,476 ms
9,984 KB |
testcase_08 | AC | 1,490 ms
10,112 KB |
testcase_09 | AC | 1,491 ms
10,112 KB |
testcase_10 | AC | 1,479 ms
9,984 KB |
testcase_11 | AC | 1,482 ms
10,240 KB |
testcase_12 | AC | 1,469 ms
10,496 KB |
testcase_13 | AC | 1,494 ms
10,880 KB |
testcase_14 | AC | 1,465 ms
10,496 KB |
testcase_15 | AC | 1,470 ms
10,368 KB |
testcase_16 | AC | 1,517 ms
10,624 KB |
testcase_17 | AC | 1,481 ms
10,496 KB |
testcase_18 | AC | 1,518 ms
10,368 KB |
testcase_19 | AC | 1,485 ms
10,368 KB |
testcase_20 | AC | 1,487 ms
10,624 KB |
testcase_21 | AC | 1,490 ms
10,880 KB |
testcase_22 | AC | 1,464 ms
10,752 KB |
testcase_23 | AC | 1,516 ms
11,008 KB |
testcase_24 | AC | 1,479 ms
11,008 KB |
testcase_25 | AC | 1,481 ms
10,880 KB |
testcase_26 | AC | 1,496 ms
11,008 KB |
testcase_27 | AC | 1,471 ms
11,008 KB |
testcase_28 | AC | 1,453 ms
10,880 KB |
testcase_29 | AC | 1,500 ms
10,880 KB |
testcase_30 | AC | 1,484 ms
11,008 KB |
testcase_31 | AC | 1,451 ms
9,984 KB |
testcase_32 | AC | 1,419 ms
10,112 KB |
testcase_33 | AC | 1,473 ms
10,112 KB |
testcase_34 | AC | 1,448 ms
10,112 KB |
ソースコード
use std::io::Read; fn get_word() -> String { let stdin = std::io::stdin(); let mut stdin=stdin.lock(); let mut u8b: [u8; 1] = [0]; loop { let mut buf: Vec<u8> = Vec::with_capacity(16); loop { let res = stdin.read(&mut u8b); if res.unwrap_or(0) == 0 || u8b[0] <= b' ' { break; } else { buf.push(u8b[0]); } } if buf.len() >= 1 { let ret = String::from_utf8(buf).unwrap(); return ret; } } } fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod> Default for ModInt<M> { fn default() -> Self { Self::new_internal(0) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 998_244_353; define_mod!(P, MOD); type MInt = mod_int::ModInt<P>; // Depends on MInt.rs fn fact_init(w: usize) -> (Vec<MInt>, Vec<MInt>) { let mut fac = vec![MInt::new(1); w]; let mut invfac = vec![0.into(); w]; for i in 1..w { fac[i] = fac[i - 1] * i as i64; } invfac[w - 1] = fac[w - 1].inv(); for i in (0..w - 1).rev() { invfac[i] = invfac[i + 1] * (i as i64 + 1); } (fac, invfac) } // FFT (in-place, verified as NTT only) // R: Ring + Copy // Verified by: https://judge.yosupo.jp/submission/53831 // Adopts the technique used in https://judge.yosupo.jp/submission/3153. mod fft { use std::ops::*; // n should be a power of 2. zeta is a primitive n-th root of unity. // one is unity // Note that the result is bit-reversed. pub fn fft<R>(f: &mut [R], zeta: R, one: R) where R: Copy + Add<Output = R> + Sub<Output = R> + Mul<Output = R> { let n = f.len(); assert!(n.is_power_of_two()); let mut m = n; let mut base = zeta; unsafe { while m > 2 { m >>= 1; let mut r = 0; while r < n { let mut w = one; for s in r..r + m { let &u = f.get_unchecked(s); let d = *f.get_unchecked(s + m); *f.get_unchecked_mut(s) = u + d; *f.get_unchecked_mut(s + m) = w * (u - d); w = w * base; } r += 2 * m; } base = base * base; } if m > 1 { // m = 1 let mut r = 0; while r < n { let &u = f.get_unchecked(r); let d = *f.get_unchecked(r + 1); *f.get_unchecked_mut(r) = u + d; *f.get_unchecked_mut(r + 1) = u - d; r += 2; } } } } pub fn inv_fft<R>(f: &mut [R], zeta_inv: R, one: R) where R: Copy + Add<Output = R> + Sub<Output = R> + Mul<Output = R> { let n = f.len(); assert!(n.is_power_of_two()); let zeta = zeta_inv; // inverse FFT let mut zetapow = Vec::with_capacity(20); { let mut m = 1; let mut cur = zeta; while m < n { zetapow.push(cur); cur = cur * cur; m *= 2; } } let mut m = 1; unsafe { if m < n { zetapow.pop(); let mut r = 0; while r < n { let &u = f.get_unchecked(r); let d = *f.get_unchecked(r + 1); *f.get_unchecked_mut(r) = u + d; *f.get_unchecked_mut(r + 1) = u - d; r += 2; } m = 2; } while m < n { let base = zetapow.pop().unwrap(); let mut r = 0; while r < n { let mut w = one; for s in r..r + m { let &u = f.get_unchecked(s); let d = *f.get_unchecked(s + m) * w; *f.get_unchecked_mut(s) = u + d; *f.get_unchecked_mut(s + m) = u - d; w = w * base; } r += 2 * m; } m *= 2; } } } } // f(N, B, C) を問題の解として、再帰で解くことにすると f の呼び出し方は N * 60 通り程度。 // このままだと各呼び出しに O(N) 時間かかるので間に合わない。 // f の呼び出し方は f(N, (B >> i) - j, C >> i) に限られるので、これを dp[i][j] と呼ぶことにすれば // 遷移は dp[i][j] += dp[i + 1][(j + k) >> 1] * C(N, k) なので、NTT で加速できる。 // 計算量は O(N log N log B)-time である。 // https://yukicoder.me/problems/no/2237 (4) // Tags: ntt, fft, dp fn main() { let n: usize = get(); let b: i64 = get(); let c: i64 = get(); let (fac, invfac) = fact_init(n + 1); let mut comb_even = vec![MInt::new(0); W]; let mut comb_odd = vec![MInt::new(0); W]; const W: usize = 1 << 18; for i in 0..n + 1 { if i % 2 == 0 { comb_even[(W - i) % W] = fac[n] * invfac[i] * invfac[n - i]; } else { comb_odd[(W - i) % W] = fac[n] * invfac[i] * invfac[n - i]; } } let zeta = MInt::new(3).pow((MOD - 1) / W as i64); fft::fft(&mut comb_even, zeta, 1.into()); fft::fft(&mut comb_odd, zeta, 1.into()); let mut dp = vec![MInt::new(0); W]; let mut ep = vec![MInt::new(0); W]; dp[0] += 1; for pos in 0..60 { for i in 0..W { ep[i] = 0.into(); } let b = (b >> (59 - pos)) & 1; let c = (c >> (59 - pos)) & 1; for i in 0..2 * n + 1 { ep[2 * i + b as usize] = dp[i]; } fft::fft(&mut ep, zeta, 1.into()); if c == 0 { for i in 0..W { ep[i] *= comb_even[i]; } } else { for i in 0..W { ep[i] *= comb_odd[i]; } } fft::inv_fft(&mut ep, zeta.inv(), 1.into()); for i in 0..2 * n + 1 { dp[i] = ep[i]; } } let factor = MInt::new(W as i64).pow(MOD - 1 - 60); println!("{}", dp[0] * factor); }