結果

問題 No.2237 Xor Sum Hoge
ユーザー koba-e964
提出日時 2023-03-26 17:43:17
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 1,518 ms / 10,000 ms
コード長 10,087 bytes
コンパイル時間 12,393 ms
コンパイル使用メモリ 383,956 KB
実行使用メモリ 11,008 KB
最終ジャッジ日時 2024-09-19 09:54:47
合計ジャッジ時間 66,767 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 32
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

use std::io::Read;
fn get_word() -> String {
let stdin = std::io::stdin();
let mut stdin=stdin.lock();
let mut u8b: [u8; 1] = [0];
loop {
let mut buf: Vec<u8> = Vec::with_capacity(16);
loop {
let res = stdin.read(&mut u8b);
if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {
break;
} else {
buf.push(u8b[0]);
}
}
if buf.len() >= 1 {
let ret = String::from_utf8(buf).unwrap();
return ret;
}
}
}
fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }
/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod> Default for ModInt<M> {
fn default() -> Self { Self::new_internal(0) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
let (mut a, mut b, _) = red(self.x, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 998_244_353;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;
// Depends on MInt.rs
fn fact_init(w: usize) -> (Vec<MInt>, Vec<MInt>) {
let mut fac = vec![MInt::new(1); w];
let mut invfac = vec![0.into(); w];
for i in 1..w {
fac[i] = fac[i - 1] * i as i64;
}
invfac[w - 1] = fac[w - 1].inv();
for i in (0..w - 1).rev() {
invfac[i] = invfac[i + 1] * (i as i64 + 1);
}
(fac, invfac)
}
// FFT (in-place, verified as NTT only)
// R: Ring + Copy
// Verified by: https://judge.yosupo.jp/submission/53831
// Adopts the technique used in https://judge.yosupo.jp/submission/3153.
mod fft {
use std::ops::*;
// n should be a power of 2. zeta is a primitive n-th root of unity.
// one is unity
// Note that the result is bit-reversed.
pub fn fft<R>(f: &mut [R], zeta: R, one: R)
where R: Copy +
Add<Output = R> +
Sub<Output = R> +
Mul<Output = R> {
let n = f.len();
assert!(n.is_power_of_two());
let mut m = n;
let mut base = zeta;
unsafe {
while m > 2 {
m >>= 1;
let mut r = 0;
while r < n {
let mut w = one;
for s in r..r + m {
let &u = f.get_unchecked(s);
let d = *f.get_unchecked(s + m);
*f.get_unchecked_mut(s) = u + d;
*f.get_unchecked_mut(s + m) = w * (u - d);
w = w * base;
}
r += 2 * m;
}
base = base * base;
}
if m > 1 {
// m = 1
let mut r = 0;
while r < n {
let &u = f.get_unchecked(r);
let d = *f.get_unchecked(r + 1);
*f.get_unchecked_mut(r) = u + d;
*f.get_unchecked_mut(r + 1) = u - d;
r += 2;
}
}
}
}
pub fn inv_fft<R>(f: &mut [R], zeta_inv: R, one: R)
where R: Copy +
Add<Output = R> +
Sub<Output = R> +
Mul<Output = R> {
let n = f.len();
assert!(n.is_power_of_two());
let zeta = zeta_inv; // inverse FFT
let mut zetapow = Vec::with_capacity(20);
{
let mut m = 1;
let mut cur = zeta;
while m < n {
zetapow.push(cur);
cur = cur * cur;
m *= 2;
}
}
let mut m = 1;
unsafe {
if m < n {
zetapow.pop();
let mut r = 0;
while r < n {
let &u = f.get_unchecked(r);
let d = *f.get_unchecked(r + 1);
*f.get_unchecked_mut(r) = u + d;
*f.get_unchecked_mut(r + 1) = u - d;
r += 2;
}
m = 2;
}
while m < n {
let base = zetapow.pop().unwrap();
let mut r = 0;
while r < n {
let mut w = one;
for s in r..r + m {
let &u = f.get_unchecked(s);
let d = *f.get_unchecked(s + m) * w;
*f.get_unchecked_mut(s) = u + d;
*f.get_unchecked_mut(s + m) = u - d;
w = w * base;
}
r += 2 * m;
}
m *= 2;
}
}
}
}
// f(N, B, C) f N * 60
// O(N)
// f f(N, (B >> i) - j, C >> i) dp[i][j]
// dp[i][j] += dp[i + 1][(j + k) >> 1] * C(N, k) NTT
// O(N log N log B)-time
// https://yukicoder.me/problems/no/2237 (4)
// Tags: ntt, fft, dp
fn main() {
let n: usize = get();
let b: i64 = get();
let c: i64 = get();
let (fac, invfac) = fact_init(n + 1);
let mut comb_even = vec![MInt::new(0); W];
let mut comb_odd = vec![MInt::new(0); W];
const W: usize = 1 << 18;
for i in 0..n + 1 {
if i % 2 == 0 {
comb_even[(W - i) % W] = fac[n] * invfac[i] * invfac[n - i];
} else {
comb_odd[(W - i) % W] = fac[n] * invfac[i] * invfac[n - i];
}
}
let zeta = MInt::new(3).pow((MOD - 1) / W as i64);
fft::fft(&mut comb_even, zeta, 1.into());
fft::fft(&mut comb_odd, zeta, 1.into());
let mut dp = vec![MInt::new(0); W];
let mut ep = vec![MInt::new(0); W];
dp[0] += 1;
for pos in 0..60 {
for i in 0..W {
ep[i] = 0.into();
}
let b = (b >> (59 - pos)) & 1;
let c = (c >> (59 - pos)) & 1;
for i in 0..2 * n + 1 {
ep[2 * i + b as usize] = dp[i];
}
fft::fft(&mut ep, zeta, 1.into());
if c == 0 {
for i in 0..W {
ep[i] *= comb_even[i];
}
} else {
for i in 0..W {
ep[i] *= comb_odd[i];
}
}
fft::inv_fft(&mut ep, zeta.inv(), 1.into());
for i in 0..2 * n + 1 {
dp[i] = ep[i];
}
}
let factor = MInt::new(W as i64).pow(MOD - 1 - 60);
println!("{}", dp[0] * factor);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0