結果
問題 | No.922 東北きりきざむたん |
ユーザー | 草苺奶昔 |
提出日時 | 2023-03-28 16:24:34 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 11,981 bytes |
コンパイル時間 | 325 ms |
コンパイル使用メモリ | 82,816 KB |
実行使用メモリ | 203,968 KB |
最終ジャッジ日時 | 2024-09-20 06:07:32 |
合計ジャッジ時間 | 21,880 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 67 ms
69,760 KB |
testcase_01 | AC | 64 ms
69,760 KB |
testcase_02 | AC | 63 ms
70,144 KB |
testcase_03 | AC | 66 ms
69,760 KB |
testcase_04 | AC | 93 ms
77,696 KB |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | AC | 90 ms
78,208 KB |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | AC | 357 ms
133,592 KB |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | RE | - |
testcase_22 | RE | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | AC | 890 ms
193,056 KB |
testcase_26 | AC | 906 ms
192,988 KB |
testcase_27 | AC | 889 ms
192,688 KB |
testcase_28 | AC | 487 ms
155,692 KB |
testcase_29 | RE | - |
ソースコード
from typing import List, Tuple # class Tree class LCA_HLD: __slots__ = ( "depth", "parent", "tree", "depthWeighted", "lid", "rid", "_idToNode", "_top", "_heavySon", "_dfn", ) def __init__(self, n: int) -> None: self.depth = [0] * n self.parent = [-1] * n self.tree = [[] for _ in range(n)] self.depthWeighted = [0] * n self.lid = [0] * n self.rid = [0] * n self._idToNode = [0] * n self._top = [0] * n self._heavySon = [0] * n self._dfn = 0 def build(self, root=-1) -> None: if root != -1: self._build(root, -1, 0, 0) self._markTop(root, root) return n = len(self.tree) for i in range(n): if self.parent[i] == -1: self._build(i, -1, 0, 0) self._markTop(i, i) def addEdge(self, from_: int, to: int, weight: int) -> None: self.tree[from_].append((to, weight)) self.tree[to].append((from_, weight)) def addDirectedEdge(self, from_: int, to: int, weight: int) -> None: self.tree[from_].append((to, weight)) def lca(self, u: int, v: int) -> int: while True: if self.lid[u] > self.lid[v]: u, v = v, u if self._top[u] == self._top[v]: return u v = self.parent[self._top[v]] def dist(self, u: int, v: int, weighted=True) -> int: if weighted: return ( self.depthWeighted[u] + self.depthWeighted[v] - 2 * self.depthWeighted[self.lca(u, v)] ) return self.depth[u] + self.depth[v] - 2 * self.depth[self.lca(u, v)] def kthAncestor(self, root: int, k: int) -> int: """k:0-indexed;如果不存在,返回-1. kthAncestor(root,0) = root """ if k > self.depth[root]: return -1 while True: u = self._top[root] if self.lid[root] - k >= self.lid[u]: return self._idToNode[self.lid[root] - k] k -= self.lid[root] - self.lid[u] + 1 root = self.parent[u] def jump(self, from_: int, to: int, step: int) -> int: """ 从 from 节点跳向 to 节点,跳过 step 个节点(0-indexed). 返回跳到的节点,如果不存在这样的节点,返回-1. """ if step == 1: if from_ == to: return -1 if self.isInSubtree(to, from_): return self.kthAncestor(to, self.depth[to] - self.depth[from_] - 1) return self.parent[from_] c = self.lca(from_, to) dac = self.depth[from_] - self.depth[c] dbc = self.depth[to] - self.depth[c] if step > dac + dbc: return -1 if step <= dac: return self.kthAncestor(from_, step) return self.kthAncestor(to, dac + dbc - step) def getPath(self, from_: int, to: int) -> List[int]: res = [] composition = self.getPathDecomposition(from_, to, True) for a, b in composition: if a <= b: res += self._idToNode[a : b + 1] else: res += self._idToNode[a : b - 1 : -1] return res def getPathDecomposition(self, from_: int, to: int, vertex: bool) -> List[Tuple[int, int]]: """返回沿着`路径顺序`的 [起点,终点] 的 欧拉序 `左闭右闭` 数组. 注意不一定沿着欧拉序, 但是沿着路径顺序. """ up, down = [], [] while True: if self._top[from_] == self._top[to]: break if self.lid[from_] < self.lid[to]: down.append((self.lid[self._top[to]], self.lid[to])) to = self.parent[self._top[to]] else: up.append((self.lid[from_], self.lid[self._top[from_]])) from_ = self.parent[self._top[from_]] offset = 1 ^ vertex if self.lid[from_] < self.lid[to]: down.append((self.lid[from_] + offset, self.lid[to])) elif self.lid[to] + offset <= self.lid[from_]: up.append((self.lid[from_], self.lid[to] + offset)) return up + down[::-1] def isInSubtree(self, child: int, root: int) -> bool: """child是否在root的子树中(child和root不能相等)""" return self.lid[root] <= self.lid[child] < self.rid[root] def subtreeSize(self, root: int) -> int: return self.rid[root] - self.lid[root] def id(self, root) -> Tuple[int, int]: """返回 root 的欧拉序区间, 左闭右开, 0-indexed.""" return self.lid[root], self.rid[root] def eid(self, u: int, v: int) -> int: """返回边 u-v 对应的 欧拉序起点编号, 0-indexed.""" id1, id2 = self.lid[u], self.lid[v] return id1 if id1 > id2 else id2 def _build(self, cur: int, pre: int, dep: int, dist: int) -> int: subSize, heavySize, heavySon = 1, 0, -1 for next, weight in self.tree[cur]: if next != pre: nextSize = self._build(next, cur, dep + 1, dist + weight) subSize += nextSize if nextSize > heavySize: heavySize, heavySon = nextSize, next self.depth[cur] = dep self.depthWeighted[cur] = dist self.parent[cur] = pre self._heavySon[cur] = heavySon return subSize def _markTop(self, cur: int, top: int) -> None: self._top[cur] = top self.lid[cur] = self._dfn self._idToNode[self._dfn] = cur self._dfn += 1 if self._heavySon[cur] != -1: self._markTop(self._heavySon[cur], top) for next, _ in self.tree[cur]: if next != self._heavySon[cur] and next != self.parent[cur]: self._markTop(next, next) self.rid[cur] = self._dfn from collections import defaultdict from typing import Callable, Dict, Generic, List, TypeVar T = TypeVar("T") class RerootingDict(Generic[T]): __slots__ = "adjMap", "_allVertex" def __init__(self): self.adjMap = defaultdict(list) self._allVertex = set() def addEdge(self, u: int, v: int) -> None: self.adjMap[u].append(v) self.adjMap[v].append(u) self._allVertex |= {u, v} def rerooting( self, e: Callable[[int], T], op: Callable[[T, T], T], composition: Callable[[T, int, int, int], T], root: int, ) -> Dict[int, "T"]: parents = {v: -1 for v in self._allVertex} order = [root] stack = [root] while stack: cur = stack.pop() for next in self.adjMap[cur]: if next == parents[cur]: continue parents[next] = cur order.append(next) stack.append(next) dp1 = {v: e(v) for v in self._allVertex} dp2 = {v: e(v) for v in self._allVertex} for cur in order[::-1]: res = e(cur) for next in self.adjMap[cur]: if parents[cur] == next: continue dp2[next] = res res = op(res, composition(dp1[next], cur, next, 0)) res = e(cur) for next in self.adjMap[cur][::-1]: if parents[cur] == next: continue dp2[next] = op(res, dp2[next]) res = op(res, composition(dp1[next], cur, next, 0)) dp1[cur] = res for newRoot in order[1:]: parent = parents[newRoot] dp2[newRoot] = composition(op(dp2[newRoot], dp2[parent]), parent, newRoot, 1) dp1[newRoot] = op(dp1[newRoot], dp2[newRoot]) return dp1 from typing import Dict, Set, Tuple, List INF = int(4e18) if __name__ == "__main__": from collections import defaultdict from typing import DefaultDict, List class UnionFindArray: __slots__ = ("n", "part", "_parent", "_rank") def __init__(self, n: int): self.n = n self.part = n self._parent = list(range(n)) self._rank = [1] * n def find(self, x: int) -> int: while x != self._parent[x]: self._parent[x] = self._parent[self._parent[x]] x = self._parent[x] return x def union(self, x: int, y: int) -> bool: rootX = self.find(x) rootY = self.find(y) if rootX == rootY: return False if self._rank[rootX] > self._rank[rootY]: rootX, rootY = rootY, rootX self._parent[rootX] = rootY self._rank[rootY] += self._rank[rootX] self.part -= 1 return True def isConnected(self, x: int, y: int) -> bool: return self.find(x) == self.find(y) def getGroups(self) -> DefaultDict[int, List[int]]: groups = defaultdict(list) for key in range(self.n): root = self.find(key) groups[root].append(key) return groups E = Tuple[int, int] # (distSum,size) 树中距离之和, 子树大小 def e(root: int) -> E: return (0, 0) def op(childRes1: E, childRes2: E) -> E: dist1, size1 = childRes1 dist2, size2 = childRes2 return (dist1 + dist2, size1 + size2) def composition(fromRes: E, parent: int, cur: int, direction: int) -> E: """direction: 0: cur -> parent, 1: parent -> cur""" dist, size = fromRes return (dist + size + 1, size + 1) n, m, q = map(int, input().split()) adjList = [[] for _ in range(n)] edges = [] uf = UnionFindArray(n) LCA = LCA_HLD(n) for _ in range(m): u, v = map(int, input().split()) # 树中保留的边 u, v = u - 1, v - 1 adjList[u].append((v, 1)) adjList[v].append((u, 1)) edges.append((u, v)) uf.union(u, v) LCA.addEdge(u, v, 1) LCA.build(root=-1) res = 0 toCenter = defaultdict(set) # 每个连通分量内需要到飞机场的点(特殊点) for _ in range(q): a, b = map(int, input().split()) # 移动的起点和终点 a, b = a - 1, b - 1 if uf.isConnected(a, b): res += LCA.dist(a, b, weighted=False) else: toCenter[uf.find(a)].add(a) toCenter[uf.find(b)].add(b) def getDistSumToSpecials( edges: List[Tuple[int, int]], specials: Set[int], root: int ) -> Dict[int, int]: """求`树`中每个点到特殊点的距离之和.""" E = Tuple[int, int] # (distSum,size) 树中距离之和, 子树中特殊点的大小 def e(root: int) -> E: return (0, 0) def op(childRes1: E, childRes2: E) -> E: dist1, size1 = childRes1 dist2, size2 = childRes2 return (dist1 + dist2, size1 + size2) def composition(fromRes: E, parent: int, cur: int, direction: int) -> E: """direction: 0: cur -> parent, 1: parent -> cur""" dist, size = fromRes from_ = cur if direction == 0 else parent count = 1 if from_ in specials else 0 return (dist + size + count, size + count) R = RerootingDict() for u, v in edges: R.addEdge(u, v) dp = R.rerooting(e, op, composition, root=root) return {k: v[0] for k, v in dp.items()} groupEdges = defaultdict(list) # 每个连通分量内的边 for u, v in edges: groupEdges[uf.find(u)].append((u, v)) groups = uf.getGroups() for root, nodes in groups.items(): dp = getDistSumToSpecials(groupEdges[root], toCenter[root], root) res += min(dp.values(), default=0) print(res)