結果
問題 | No.376 立方体のN等分 (2) |
ユーザー | siman |
提出日時 | 2023-03-28 21:29:21 |
言語 | C++17(clang) (17.0.6 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 1,453 bytes |
コンパイル時間 | 3,789 ms |
コンパイル使用メモリ | 144,452 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-20 10:03:51 |
合計ジャッジ時間 | 6,670 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | RE | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | RE | - |
testcase_12 | WA | - |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | RE | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | RE | - |
testcase_19 | WA | - |
testcase_20 | AC | 2 ms
6,940 KB |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | AC | 2 ms
6,944 KB |
testcase_26 | WA | - |
testcase_27 | RE | - |
testcase_28 | AC | 3 ms
6,940 KB |
testcase_29 | RE | - |
testcase_30 | WA | - |
testcase_31 | RE | - |
testcase_32 | RE | - |
testcase_33 | RE | - |
testcase_34 | RE | - |
testcase_35 | RE | - |
testcase_36 | RE | - |
testcase_37 | RE | - |
testcase_38 | RE | - |
testcase_39 | WA | - |
ソースコード
#include <cassert> #include <cmath> #include <algorithm> #include <iostream> #include <iomanip> #include <limits.h> #include <map> #include <queue> #include <string.h> #include <vector> using namespace std; typedef long long ll; class Prime { public: vector<ll> prime_list; const ll MAX_N = 100000; Prime() { bool checked[MAX_N + 1]; memset(checked, false, sizeof(checked)); for (ll i = 2; i <= MAX_N; ++i) { if (!checked[i]) { prime_list.push_back(i); for (ll j = i * i; j <= MAX_N; j += i) { checked[j] = true; } } } } map<ll, int> prime_division(ll n) { map<ll, int> res; for (ll i = 0; prime_list[i] <= sqrt(n); ++i) { ll p = prime_list[i]; while (n % p == 0) { ++res[p]; n /= p; } } if (n != 1) { res[n] = 1; } return res; } bool is_prime(ll n) { if (n <= 1) return false; for (int i = 0; i < prime_list.size(); ++i) { if (n % prime_list[i]) return false; } return true; } }; int main() { ll N; Prime prime; cin >> N; ll min_T = LLONG_MAX; ll max_T = N - 1; map<ll, int> res = prime.prime_division(N); for (auto &[a, cnt] : res) { for (auto &[b, cnt] : res) { if (N % (a * b) != 0) continue; ll c = N / (a * b); ll t = (a + b + c) - 3; min_T = min(min_T, t); } } cout << min_T << " " << max_T << endl; return 0; }