結果
問題 | No.1891 Static Xor Range Composite Query |
ユーザー |
|
提出日時 | 2023-03-28 22:43:11 |
言語 | Rust (1.83.0 + proconio) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 7,330 bytes |
コンパイル時間 | 28,299 ms |
コンパイル使用メモリ | 378,096 KB |
実行使用メモリ | 41,692 KB |
最終ジャッジ日時 | 2024-12-24 03:40:25 |
合計ジャッジ時間 | 85,178 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 29 TLE * 1 |
ソースコード
use std::cmp::*;use std::io::{Write, BufWriter};// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8macro_rules! input {($($r:tt)*) => {let stdin = std::io::stdin();let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));let mut next = move || -> String{bytes.by_ref().map(|r|r.unwrap() as char).skip_while(|c|c.is_whitespace()).take_while(|c|!c.is_whitespace()).collect()};input_inner!{next, $($r)*}};}macro_rules! input_inner {($next:expr) => {};($next:expr,) => {};($next:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($next, $t);input_inner!{$next $($r)*}};}macro_rules! read_value {($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };($next:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()};($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));}/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 998_244_353;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// comp(f, g) = g o ffn comp((a, b): (MInt, MInt), (c, d): (MInt, MInt)) -> (MInt, MInt) {(a * c, b * c + d)}// https://yukicoder.me/problems/no/1891 (4)// a_i != 0 なのでそれぞれの線形変換には逆変換が存在する。// s = floor(log_2 N / 2) として 0 <= k < 2^s なる i に対して f_{i xor k} の累積積およびその逆元を保持しておくと、それぞれのクエリは 2^{log_2 N - s}= O(sqrt(N))-time でできる。// 時間は O((N+Q)sqrt(N))、空間は O(N + Q) である。fn main() {let out = std::io::stdout();let mut out = BufWriter::new(out.lock());macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););}input! {n: usize, q: usize,ab: [(i64, i64); n],lrpx: [(usize, usize, usize, i64); q],}let mut f = vec![(MInt::new(0), MInt::new(0)); n];let mut invf = vec![(MInt::new(0), MInt::new(0)); n];for i in 0..n {let (a, b) = ab[i];let inva = MInt::new(a).inv();f[i] = (a.into(), b.into());invf[i] = (inva, -inva * b);}let lgn = (n - 1).count_ones() as usize;let s = lgn / 2;let mut qs = vec![vec![]; 1 << s];for i in 0..q {let (l, r, p, x) = lrpx[i];let idx = p & ((1 << s) - 1);qs[idx].push((l, r, p & !0usize << s, x, i));}let mut ans = vec![MInt::new(0); q];for idx in 0..1 << s {if qs[idx].is_empty() { continue; }let mut acc = vec![(MInt::new(0), MInt::new(0)); n + 1];let mut invacc = vec![(MInt::new(0), MInt::new(0)); n + 1];acc[0] = (1.into(), 0.into());invacc[0] = (1.into(), 0.into());for i in 0..n {acc[i + 1] = comp(acc[i], f[i ^ idx]);invacc[i + 1] = comp(invf[i ^ idx], invacc[i]);}for &(l, r, p, x, i) in &qs[idx] {let mut prod = MInt::new(x);for b in 0..n >> s {let lo = max(b << s, l);let hi = min((b + 1) << s, r);if lo < hi {let base = b << s ^ p;let tmp = comp(invacc[base + lo - (b << s)], acc[base + hi - (b << s)]);prod = tmp.0 * prod + tmp.1;}}ans[i] = prod;}}for a in ans {puts!("{}\n", a);}}