結果
| 問題 |
No.1983 [Cherry 4th Tune C] 南の島のマーメイド
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-03-30 23:11:33 |
| 言語 | Go (1.23.4) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 6,261 bytes |
| コンパイル時間 | 14,219 ms |
| コンパイル使用メモリ | 237,636 KB |
| 実行使用メモリ | 111,444 KB |
| 最終ジャッジ日時 | 2024-09-22 07:57:03 |
| 合計ジャッジ時間 | 31,465 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | WA * 41 |
ソースコード
package main
import (
"bufio"
"fmt"
"os"
"strings"
)
func main() {
yuki1983()
}
func yuki1983() {
// https://yukicoder.me/problems/no/1983
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, m, q int
fmt.Fscan(in, &n, &m, &q)
graph := make([][]Edge, n)
edges := make([][2]int, m)
for i := 0; i < m; i++ {
var u, v int
fmt.Fscan(in, &u, &v)
u--
v--
graph[u] = append(graph[u], Edge{u, v, 1, i})
graph[v] = append(graph[v], Edge{v, u, 1, i})
edges[i] = [2]int{u, v}
}
tec := NewTwoEdgeConnectedComponents(graph)
tec.Build()
uf := NewUnionFindArray(n)
for _, e := range edges {
from_, to := e[0], e[1]
if tec.Get(from_) != tec.Get(to) {
uf.Union(from_, to)
}
}
for i := 0; i < q; i++ {
var u, v int
fmt.Fscan(in, &u, &v)
u--
v--
if uf.Union(u, v) {
fmt.Fprintln(out, "Yes")
} else {
fmt.Fprintln(out, "No")
}
}
}
func yosupu() {
// https://judge.yosupo.jp/submission/125538
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, m int
fmt.Fscan(in, &n, &m)
g := make([][]Edge, n)
for i := 0; i < m; i++ {
var u, v int
fmt.Fscan(in, &u, &v)
g[u] = append(g[u], Edge{u, v, 1, i})
g[v] = append(g[v], Edge{v, u, 1, i})
}
tec := NewTwoEdgeConnectedComponents(g)
tec.Build()
fmt.Fprintln(out, len(tec.Group))
for _, p := range tec.Group {
fmt.Fprint(out, len(p))
for _, v := range p {
fmt.Fprint(out, " ", v)
}
fmt.Fprintln(out)
}
}
type Edge = struct{ from, to, cost, index int }
type TwoEdgeConnectedComponents struct {
Tree [][]Edge // 缩点后各个顶点形成的树
CompId []int // 每个点所属的边双连通分量的编号
Group [][]int // 每个边双连通分量里的点
g [][]Edge
lowLink *LowLink
k int
}
func NewTwoEdgeConnectedComponents(g [][]Edge) *TwoEdgeConnectedComponents {
return &TwoEdgeConnectedComponents{
g: g,
lowLink: NewLowLink(g),
}
}
func (tec *TwoEdgeConnectedComponents) Build() {
tec.lowLink.Build()
tec.CompId = make([]int, len(tec.g))
for i := 0; i < len(tec.g); i++ {
tec.CompId[i] = -1
}
for i := 0; i < len(tec.g); i++ {
if tec.CompId[i] == -1 {
tec.dfs(i, -1)
}
}
tec.Group = make([][]int, tec.k)
for i := 0; i < len(tec.g); i++ {
tec.Group[tec.CompId[i]] = append(tec.Group[tec.CompId[i]], i)
}
tec.Tree = make([][]Edge, tec.k)
for _, e := range tec.lowLink.Bridge {
tec.Tree[tec.CompId[e.from]] = append(tec.Tree[tec.CompId[e.from]], Edge{tec.CompId[e.from], tec.CompId[e.to], e.cost, e.index})
tec.Tree[tec.CompId[e.to]] = append(tec.Tree[tec.CompId[e.to]], Edge{tec.CompId[e.to], tec.CompId[e.from], e.cost, e.index})
}
}
// 每个点所属的边双连通分量的编号.
func (tec *TwoEdgeConnectedComponents) Get(k int) int { return tec.CompId[k] }
func (tec *TwoEdgeConnectedComponents) dfs(idx, par int) {
if par >= 0 && tec.lowLink.ord[par] >= tec.lowLink.low[idx] {
tec.CompId[idx] = tec.CompId[par]
} else {
tec.CompId[idx] = tec.k
tec.k++
}
for _, e := range tec.g[idx] {
if tec.CompId[e.to] == -1 {
tec.dfs(e.to, idx)
}
}
}
type LowLink struct {
Articulation []int // 関節点
Bridge []Edge // 橋
g [][]Edge
ord, low []int
used []bool
}
func NewLowLink(g [][]Edge) *LowLink {
return &LowLink{g: g}
}
func (ll *LowLink) Build() {
ll.used = make([]bool, len(ll.g))
ll.ord = make([]int, len(ll.g))
ll.low = make([]int, len(ll.g))
k := 0
for i := 0; i < len(ll.g); i++ {
if !ll.used[i] {
k = ll.dfs(i, k, -1)
}
}
}
func (ll *LowLink) dfs(idx, k, par int) int {
ll.used[idx] = true
ll.ord[idx] = k
k++
ll.low[idx] = ll.ord[idx]
isArticulation := false
beet := false
cnt := 0
for _, e := range ll.g[idx] {
if e.to == par {
tmp := beet
beet = true
if !tmp {
continue
}
}
if !ll.used[e.to] {
cnt++
k = ll.dfs(e.to, k, idx)
ll.low[idx] = min(ll.low[idx], ll.low[e.to])
if par >= 0 && ll.low[e.to] >= ll.ord[idx] {
isArticulation = true
}
if ll.ord[idx] < ll.low[e.to] {
ll.Bridge = append(ll.Bridge, e)
}
} else {
ll.low[idx] = min(ll.low[idx], ll.ord[e.to])
}
}
if par == -1 && cnt > 1 {
isArticulation = true
}
if isArticulation {
ll.Articulation = append(ll.Articulation, idx)
}
return k
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func NewUnionFindArray(n int) *UnionFindArray {
parent, rank := make([]int, n), make([]int, n)
for i := 0; i < n; i++ {
parent[i] = i
rank[i] = 1
}
return &UnionFindArray{
Part: n,
rank: rank,
n: n,
parent: parent,
}
}
type UnionFindArray struct {
// 连通分量的个数
Part int
rank []int
n int
parent []int
}
func (ufa *UnionFindArray) Union(key1, key2 int) bool {
root1, root2 := ufa.Find(key1), ufa.Find(key2)
if root1 == root2 {
return false
}
if ufa.rank[root1] > ufa.rank[root2] {
root1, root2 = root2, root1
}
ufa.parent[root1] = root2
ufa.rank[root2] += ufa.rank[root1]
ufa.Part--
return true
}
func (ufa *UnionFindArray) UnionWithCallback(key1, key2 int, cb func(big, small int)) bool {
root1, root2 := ufa.Find(key1), ufa.Find(key2)
if root1 == root2 {
return false
}
if ufa.rank[root1] > ufa.rank[root2] {
root1, root2 = root2, root1
}
ufa.parent[root1] = root2
ufa.rank[root2] += ufa.rank[root1]
ufa.Part--
cb(root2, root1)
return true
}
func (ufa *UnionFindArray) Find(key int) int {
for ufa.parent[key] != key {
ufa.parent[key] = ufa.parent[ufa.parent[key]]
key = ufa.parent[key]
}
return key
}
func (ufa *UnionFindArray) IsConnected(key1, key2 int) bool {
return ufa.Find(key1) == ufa.Find(key2)
}
func (ufa *UnionFindArray) GetGroups() map[int][]int {
groups := make(map[int][]int)
for i := 0; i < ufa.n; i++ {
root := ufa.Find(i)
groups[root] = append(groups[root], i)
}
return groups
}
func (ufa *UnionFindArray) Size(key int) int {
return ufa.rank[ufa.Find(key)]
}
func (ufa *UnionFindArray) String() string {
sb := []string{"UnionFindArray:"}
for root, member := range ufa.GetGroups() {
cur := fmt.Sprintf("%d: %v", root, member)
sb = append(sb, cur)
}
sb = append(sb, fmt.Sprintf("Part: %d", ufa.Part))
return strings.Join(sb, "\n")
}