結果
問題 | No.215 素数サイコロと合成数サイコロ (3-Hard) |
ユーザー | koba-e964 |
提出日時 | 2023-03-31 11:15:31 |
言語 | Rust (1.77.0 + proconio) |
結果 |
TLE
|
実行時間 | - |
コード長 | 9,659 bytes |
コンパイル時間 | 15,731 ms |
コンパイル使用メモリ | 387,172 KB |
実行使用メモリ | 17,824 KB |
最終ジャッジ日時 | 2024-09-22 16:25:15 |
合計ジャッジ時間 | 23,041 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ソースコード
use std::io::Read; fn get_word() -> String { let stdin = std::io::stdin(); let mut stdin=stdin.lock(); let mut u8b: [u8; 1] = [0]; loop { let mut buf: Vec<u8> = Vec::with_capacity(16); loop { let res = stdin.read(&mut u8b); if res.unwrap_or(0) == 0 || u8b[0] <= b' ' { break; } else { buf.push(u8b[0]); } } if buf.len() >= 1 { let ret = String::from_utf8(buf).unwrap(); return ret; } } } fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod> Default for ModInt<M> { fn default() -> Self { Self::new_internal(0) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 1_000_000_007; define_mod!(P, MOD); type MInt = mod_int::ModInt<P>; // Verified by: yukicoder No.1112 // https://yukicoder.me/submissions/510746 // https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm // Complexity: O(n^2) // Depends on MInt.rs fn berlekamp_massey<P: mod_int::Mod + PartialEq>( n: usize, s: &[mod_int::ModInt<P>], ) -> Vec<mod_int::ModInt<P>>{ type ModInt<P> = mod_int::ModInt<P>; let mut b = ModInt::new(1); let mut cp = vec![ModInt::new(0); n + 1]; let mut bp = vec![mod_int::ModInt::new(0); n]; cp[0] = mod_int::ModInt::new(1); bp[0] = mod_int::ModInt::new(1); let mut m = 1; let mut l = 0; for i in 0..2 * n + 1 { assert!(i >= l); assert!(l <= n); if i == 2 * n { break; } let mut d = s[i]; for j in 1..l + 1 { d += cp[j] * s[i - j]; } if d == ModInt::new(0) { m += 1; continue; } if 2 * l > i { // cp -= d/b * x^m * bp let factor = d * b.inv(); for j in 0..n + 1 - m { cp[m + j] -= factor * bp[j]; } m += 1; continue; } let factor = d * b.inv(); let tp = cp.clone(); for j in 0..n + 1 - m { cp[m + j] -= factor * bp[j]; } bp = tp; b = d; l = i + 1 - l; m = 1; } cp[0..l + 1].to_vec() } fn polymul(a: &[MInt], b: &[MInt], mo: &[MInt]) -> Vec<MInt> { let n = a.len(); debug_assert_eq!(b.len(), n); debug_assert_eq!(mo.len(), n + 1); debug_assert_eq!(mo[n], 1.into()); let mut ret = vec![MInt::new(0); 2 * n - 1]; for i in 0..n { for j in 0..n { ret[i + j] += a[i] * b[j]; } } for i in (n..2 * n - 1).rev() { let val = ret[i]; for j in 0..n { ret[i - n + j] -= val * mo[j]; } } ret[..n].to_vec() } fn polypow(a: &[MInt], mut e: i64, mo: &[MInt]) -> Vec<MInt> { let n = a.len(); debug_assert_eq!(mo.len(), n + 1); let mut prod = vec![MInt::new(0); n]; prod[0] += 1; let mut cur = a.to_vec(); while e > 0 { if e % 2 == 1 { prod = polymul(&prod, &cur, mo); } cur = polymul(&cur, &cur, mo); e /= 2; } prod } // Finds u a^e v^T by using Berlekamp-massey algorithm. // The linear map a is given as a closure. // Complexity: O(n^2 log e + nT(n)) where n = |u| and T(n) = complexity of a. // Ref: https://yukicoder.me/wiki/black_box_linear_algebra fn eval_matpow<F: FnMut(&[MInt]) -> Vec<MInt>>(mut a: F, e: i64, u: &[MInt], v: &[MInt]) -> MInt { let k = u.len(); // Find first 2k terms let mut terms = vec![MInt::new(0); 2 * k]; let mut cur = u.to_vec(); for pos in 0..2 * k { for i in 0..k { terms[pos] += cur[i] * v[i]; } cur = a(&cur); } let mut poly = berlekamp_massey(k, &terms); poly.reverse(); if poly.len() == 2 { let r = -poly[0]; return terms[0] * r.pow(e); } let mut base = vec![MInt::new(0); poly.len() - 1]; base[1] += 1; let powpoly = polypow(&base, e, &poly); let mut ans = MInt::new(0); for i in 0..poly.len() - 1 { ans += powpoly[i] * terms[i]; } ans } fn get_trans(a: [usize; 6], c: usize) -> Vec<MInt> { let len = a[5] * c + 1; let mut dp = vec![vec![MInt::new(0); len]; c + 1]; dp[0][0] += 1; for &v in &a { // *= (1-x^{v{p+1}}y^{p+1}) / (1 - x^vy) for j in 0..c { for i in 0..len - v { dp[j + 1][i + v] = dp[j + 1][i + v] + dp[j][i]; } } } dp[c].to_vec() } // https://yukicoder.me/problems/no/215 (6) // 行列累乗でやろうとすると 7500^3 回の計算を要するため、kitamasa 法を使う。数列のゼロ化多項式がわかれば、最初の 7500 項程度を計算することで Bostan-Mori が使えて O(7500^2 log N)。 // 数列のゼロ化多項式は Berlekamp-Massey で O(7500^2) 程度で計算できるはずなので、これで計算できる。 fn main() { let n: i64 = get(); let p: usize = get(); let c: usize = get(); let len = p * 13 + c * 12 + 1; let mut trans = vec![MInt::new(0); len]; trans[0] += 1; let ps = [2, 3, 5, 7, 11, 13]; let cs = [4, 6, 8, 9, 10, 12]; let ptrans = get_trans(ps, p); let ctrans = get_trans(cs, c); for i in 0..ptrans.len() { for j in 0..ctrans.len() { trans[i + j] += ptrans[i] * ctrans[j]; } } let a = |u: &[MInt]| { let mut v = vec![MInt::new(0); len - 1]; for i in 0..len - 2 { v[i + 1] = u[i]; } for i in 0..len - 1 { v[0] += u[i] * trans[i + 1]; } v }; let mut start = vec![MInt::new(0); len - 1]; start[0] += 1; let mut rec = vec![MInt::new(0); len - 1]; for i in (0..len - 1).rev() { rec[i] = trans[i + 1]; if i + 1 < len - 1 { rec[i] = rec[i + 1] + rec[i]; } } let val = eval_matpow(a, n - 1, &start, &rec); println!("{}", val); }