結果
問題 | No.215 素数サイコロと合成数サイコロ (3-Hard) |
ユーザー |
|
提出日時 | 2023-03-31 11:15:31 |
言語 | Rust (1.83.0 + proconio) |
結果 |
TLE
|
実行時間 | - |
コード長 | 9,659 bytes |
コンパイル時間 | 15,731 ms |
コンパイル使用メモリ | 387,172 KB |
実行使用メモリ | 17,824 KB |
最終ジャッジ日時 | 2024-09-22 16:25:15 |
合計ジャッジ時間 | 23,041 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | TLE * 1 -- * 1 |
ソースコード
use std::io::Read;fn get_word() -> String {let stdin = std::io::stdin();let mut stdin=stdin.lock();let mut u8b: [u8; 1] = [0];loop {let mut buf: Vec<u8> = Vec::with_capacity(16);loop {let res = stdin.read(&mut u8b);if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {break;} else {buf.push(u8b[0]);}}if buf.len() >= 1 {let ret = String::from_utf8(buf).unwrap();return ret;}}}fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 1_000_000_007;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// Verified by: yukicoder No.1112// https://yukicoder.me/submissions/510746// https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm// Complexity: O(n^2)// Depends on MInt.rsfn berlekamp_massey<P: mod_int::Mod + PartialEq>(n: usize,s: &[mod_int::ModInt<P>],) -> Vec<mod_int::ModInt<P>>{type ModInt<P> = mod_int::ModInt<P>;let mut b = ModInt::new(1);let mut cp = vec![ModInt::new(0); n + 1];let mut bp = vec![mod_int::ModInt::new(0); n];cp[0] = mod_int::ModInt::new(1);bp[0] = mod_int::ModInt::new(1);let mut m = 1;let mut l = 0;for i in 0..2 * n + 1 {assert!(i >= l);assert!(l <= n);if i == 2 * n { break; }let mut d = s[i];for j in 1..l + 1 {d += cp[j] * s[i - j];}if d == ModInt::new(0) {m += 1;continue;}if 2 * l > i {// cp -= d/b * x^m * bplet factor = d * b.inv();for j in 0..n + 1 - m {cp[m + j] -= factor * bp[j];}m += 1;continue;}let factor = d * b.inv();let tp = cp.clone();for j in 0..n + 1 - m {cp[m + j] -= factor * bp[j];}bp = tp;b = d;l = i + 1 - l;m = 1;}cp[0..l + 1].to_vec()}fn polymul(a: &[MInt], b: &[MInt], mo: &[MInt]) -> Vec<MInt> {let n = a.len();debug_assert_eq!(b.len(), n);debug_assert_eq!(mo.len(), n + 1);debug_assert_eq!(mo[n], 1.into());let mut ret = vec![MInt::new(0); 2 * n - 1];for i in 0..n {for j in 0..n {ret[i + j] += a[i] * b[j];}}for i in (n..2 * n - 1).rev() {let val = ret[i];for j in 0..n {ret[i - n + j] -= val * mo[j];}}ret[..n].to_vec()}fn polypow(a: &[MInt], mut e: i64, mo: &[MInt]) -> Vec<MInt> {let n = a.len();debug_assert_eq!(mo.len(), n + 1);let mut prod = vec![MInt::new(0); n];prod[0] += 1;let mut cur = a.to_vec();while e > 0 {if e % 2 == 1 {prod = polymul(&prod, &cur, mo);}cur = polymul(&cur, &cur, mo);e /= 2;}prod}// Finds u a^e v^T by using Berlekamp-massey algorithm.// The linear map a is given as a closure.// Complexity: O(n^2 log e + nT(n)) where n = |u| and T(n) = complexity of a.// Ref: https://yukicoder.me/wiki/black_box_linear_algebrafn eval_matpow<F: FnMut(&[MInt]) -> Vec<MInt>>(mut a: F, e: i64, u: &[MInt], v: &[MInt]) -> MInt {let k = u.len();// Find first 2k termslet mut terms = vec![MInt::new(0); 2 * k];let mut cur = u.to_vec();for pos in 0..2 * k {for i in 0..k {terms[pos] += cur[i] * v[i];}cur = a(&cur);}let mut poly = berlekamp_massey(k, &terms);poly.reverse();if poly.len() == 2 {let r = -poly[0];return terms[0] * r.pow(e);}let mut base = vec![MInt::new(0); poly.len() - 1];base[1] += 1;let powpoly = polypow(&base, e, &poly);let mut ans = MInt::new(0);for i in 0..poly.len() - 1 {ans += powpoly[i] * terms[i];}ans}fn get_trans(a: [usize; 6], c: usize) -> Vec<MInt> {let len = a[5] * c + 1;let mut dp = vec![vec![MInt::new(0); len]; c + 1];dp[0][0] += 1;for &v in &a {// *= (1-x^{v{p+1}}y^{p+1}) / (1 - x^vy)for j in 0..c {for i in 0..len - v {dp[j + 1][i + v] = dp[j + 1][i + v] + dp[j][i];}}}dp[c].to_vec()}// https://yukicoder.me/problems/no/215 (6)// 行列累乗でやろうとすると 7500^3 回の計算を要するため、kitamasa 法を使う。数列のゼロ化多項式がわかれば、最初の 7500 項程度を計算することで Bostan-Mori が使えて O(7500^2 log N)。// 数列のゼロ化多項式は Berlekamp-Massey で O(7500^2) 程度で計算できるはずなので、これで計算できる。fn main() {let n: i64 = get();let p: usize = get();let c: usize = get();let len = p * 13 + c * 12 + 1;let mut trans = vec![MInt::new(0); len];trans[0] += 1;let ps = [2, 3, 5, 7, 11, 13];let cs = [4, 6, 8, 9, 10, 12];let ptrans = get_trans(ps, p);let ctrans = get_trans(cs, c);for i in 0..ptrans.len() {for j in 0..ctrans.len() {trans[i + j] += ptrans[i] * ctrans[j];}}let a = |u: &[MInt]| {let mut v = vec![MInt::new(0); len - 1];for i in 0..len - 2 {v[i + 1] = u[i];}for i in 0..len - 1 {v[0] += u[i] * trans[i + 1];}v};let mut start = vec![MInt::new(0); len - 1];start[0] += 1;let mut rec = vec![MInt::new(0); len - 1];for i in (0..len - 1).rev() {rec[i] = trans[i + 1];if i + 1 < len - 1 {rec[i] = rec[i + 1] + rec[i];}}let val = eval_matpow(a, n - 1, &start, &rec);println!("{}", val);}