結果

問題 No.2258 The Jikka Tree
ユーザー 👑 NachiaNachia
提出日時 2023-03-31 17:49:45
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2,247 ms / 4,000 ms
コード長 16,878 bytes
コンパイル時間 1,834 ms
コンパイル使用メモリ 115,908 KB
実行使用メモリ 96,164 KB
最終ジャッジ日時 2024-09-23 01:59:37
合計ジャッジ時間 74,740 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 3 ms
5,376 KB
testcase_03 AC 17 ms
5,376 KB
testcase_04 AC 27 ms
5,376 KB
testcase_05 AC 27 ms
5,376 KB
testcase_06 AC 31 ms
5,376 KB
testcase_07 AC 30 ms
5,376 KB
testcase_08 AC 20 ms
5,376 KB
testcase_09 AC 31 ms
5,376 KB
testcase_10 AC 29 ms
5,376 KB
testcase_11 AC 27 ms
5,376 KB
testcase_12 AC 23 ms
5,376 KB
testcase_13 AC 29 ms
5,376 KB
testcase_14 AC 22 ms
5,376 KB
testcase_15 AC 28 ms
5,376 KB
testcase_16 AC 11 ms
5,376 KB
testcase_17 AC 37 ms
5,376 KB
testcase_18 AC 21 ms
5,376 KB
testcase_19 AC 21 ms
5,376 KB
testcase_20 AC 513 ms
7,236 KB
testcase_21 AC 550 ms
8,500 KB
testcase_22 AC 442 ms
5,376 KB
testcase_23 AC 407 ms
5,376 KB
testcase_24 AC 461 ms
5,824 KB
testcase_25 AC 520 ms
6,812 KB
testcase_26 AC 529 ms
6,976 KB
testcase_27 AC 622 ms
9,524 KB
testcase_28 AC 569 ms
9,216 KB
testcase_29 AC 535 ms
7,876 KB
testcase_30 AC 525 ms
6,972 KB
testcase_31 AC 549 ms
7,980 KB
testcase_32 AC 435 ms
5,376 KB
testcase_33 AC 667 ms
8,656 KB
testcase_34 AC 1,298 ms
78,016 KB
testcase_35 AC 1,245 ms
70,380 KB
testcase_36 AC 1,435 ms
96,164 KB
testcase_37 AC 1,368 ms
89,752 KB
testcase_38 AC 1,191 ms
75,624 KB
testcase_39 AC 1,328 ms
70,384 KB
testcase_40 AC 1,337 ms
73,928 KB
testcase_41 AC 1,320 ms
72,100 KB
testcase_42 AC 1,360 ms
71,628 KB
testcase_43 AC 1,317 ms
76,932 KB
testcase_44 AC 1,318 ms
73,060 KB
testcase_45 AC 1,529 ms
86,044 KB
testcase_46 AC 1,676 ms
86,936 KB
testcase_47 AC 1,472 ms
86,260 KB
testcase_48 AC 1,429 ms
71,252 KB
testcase_49 AC 1,216 ms
70,384 KB
testcase_50 AC 1,397 ms
94,876 KB
testcase_51 AC 1,295 ms
89,372 KB
testcase_52 AC 1,236 ms
71,248 KB
testcase_53 AC 1,407 ms
73,832 KB
testcase_54 AC 1,563 ms
81,272 KB
testcase_55 AC 1,371 ms
77,128 KB
testcase_56 AC 1,445 ms
73,740 KB
testcase_57 AC 1,762 ms
81,912 KB
testcase_58 AC 1,425 ms
71,248 KB
testcase_59 AC 2,247 ms
82,040 KB
testcase_60 AC 1,367 ms
70,248 KB
testcase_61 AC 1,674 ms
96,028 KB
testcase_62 AC 1,574 ms
89,720 KB
testcase_63 AC 1,353 ms
70,376 KB
testcase_64 AC 1,436 ms
72,372 KB
testcase_65 AC 1,654 ms
70,380 KB
testcase_66 AC 1,728 ms
74,676 KB
testcase_67 AC 2,133 ms
81,912 KB
testcase_68 AC 1,762 ms
76,684 KB
testcase_69 AC 1,718 ms
75,724 KB
testcase_70 AC 1,446 ms
60,592 KB
testcase_71 AC 335 ms
5,376 KB
testcase_72 AC 587 ms
5,632 KB
testcase_73 AC 560 ms
6,996 KB
testcase_74 AC 709 ms
9,040 KB
testcase_75 AC 702 ms
75,496 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <utility>
#include <vector>
#include <algorithm>

namespace nachia{

template<class Elem>
class CsrArray{
public:
    struct ListRange{
        using iterator = typename std::vector<Elem>::iterator;
        iterator begi, endi;
        iterator begin() const { return begi; }
        iterator end() const { return endi; }
        int size() const { return (int)std::distance(begi, endi); }
        Elem& operator[](int i) const { return begi[i]; }
    };
    struct ConstListRange{
        using iterator = typename std::vector<Elem>::const_iterator;
        iterator begi, endi;
        iterator begin() const { return begi; }
        iterator end() const { return endi; }
        int size() const { return (int)std::distance(begi, endi); }
        const Elem& operator[](int i) const { return begi[i]; }
    };
private:
    int m_n;
    std::vector<Elem> m_list;
    std::vector<int> m_pos;
public:
    CsrArray() : m_n(0), m_list(), m_pos() {}
    static CsrArray Construct(int n, std::vector<std::pair<int, Elem>> items){
        CsrArray res;
        res.m_n = n;
        std::vector<int> buf(n+1, 0);
        for(auto& [u,v] : items){ ++buf[u]; }
        for(int i=1; i<=n; i++) buf[i] += buf[i-1];
        res.m_list.resize(buf[n]);
        for(int i=(int)items.size()-1; i>=0; i--){
            res.m_list[--buf[items[i].first]] = std::move(items[i].second);
        }
        res.m_pos = std::move(buf);
        return res;
    }
    static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos){
        CsrArray res;
        res.m_n = pos.size() - 1;
        res.m_list = std::move(list);
        res.m_pos = std::move(pos);
        return res;
    }
    ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
    ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
    int size() const { return m_n; }
    int fullSize() const { return (int)m_list.size(); }
};

} // namespace nachia


#include <vector>
#include <utility>
#include <cassert>

namespace nachia{


struct Graph {
public:
    struct Edge{
        int from, to;
        void reverse(){ std::swap(from, to); }
    };
    using Base = std::vector<std::pair<int, int>>;
    Graph(int n = 0, bool undirected = false, int m = 0) : m_n(n), m_e(m), m_isUndir(undirected) {}
    Graph(int n, const std::vector<std::pair<int, int>>& edges, bool undirected = false) : m_n(n), m_isUndir(undirected){
        m_e.resize(edges.size());
        for(std::size_t i=0; i<edges.size(); i++) m_e[i] = { edges[i].first, edges[i].second };
    }
    template<class Cin>
    static Graph Input(Cin& cin, int n, bool undirected, int m, bool offset = 0){
        Graph res(n, undirected, m);
        for(int i=0; i<m; i++){
            int u, v; cin >> u >> v;
            res[i].from = u - offset;
            res[i].to = v - offset;
        }
        return res;
    }
    int numVertices() const noexcept { return m_n; }
    int numEdges() const noexcept { return int(m_e.size()); }
    int addNode() noexcept { return m_n++; }
    int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; }
    Edge& operator[](int ei) noexcept { return m_e[ei]; }
    const Edge& operator[](int ei) const noexcept { return m_e[ei]; }
    Edge& at(int ei) { return m_e.at(ei); }
    const Edge& at(int ei) const { return m_e.at(ei); }
    auto begin(){ return m_e.begin(); }
    auto end(){ return m_e.end(); }
    auto begin() const { return m_e.begin(); }
    auto end() const { return m_e.end(); }
    bool isUndirected() const noexcept { return m_isUndir; }
    void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); }
    void contract(int newV, const std::vector<int>& mapping){
        assert(numVertices() == int(mapping.size()));
        for(int i=0; i<numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV);
        for(auto& e : m_e){ e.from = mapping[e.from]; e.to = mapping[e.to]; }
    }
    std::vector<Graph> induce(int num, const std::vector<int>& mapping) const {
        int n = numVertices();
        assert(n == int(mapping.size()));
        for(int i=0; i<n; i++) assert(-1 <= mapping[i] && mapping[i] < num);
        std::vector<int> indexV(n), newV(num);
        for(int i=0; i<n; i++) if(mapping[i] >= 0) indexV[i] = newV[mapping[i]]++;
        std::vector<Graph> res; res.reserve(num);
        for(int i=0; i<num; i++) res.emplace_back(newV[i], isUndirected());
        for(auto e : m_e) if(mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]);
        return res;
    }
    CsrArray<int> getEdgeIndexArray(bool undirected) const {
        std::vector<std::pair<int, int>> src;
        src.reserve(numEdges() * (undirected ? 2 : 1));
        for(int i=0; i<numEdges(); i++){
            auto e = operator[](i);
            src.emplace_back(e.from, i);
            if(undirected) src.emplace_back(e.to, i);
        }
        return CsrArray<int>::Construct(numVertices(), src);
    }
    CsrArray<int> getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); }
    CsrArray<int> getAdjacencyArray(bool undirected) const {
        std::vector<std::pair<int, int>> src;
        src.reserve(numEdges() * (undirected ? 2 : 1));
        for(auto e : m_e){
            src.emplace_back(e.from, e.to);
            if(undirected) src.emplace_back(e.to, e.from);
        }
        return CsrArray<int>::Construct(numVertices(), src);
    }
    CsrArray<int> getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); }
private:
    int m_n;
    std::vector<Edge> m_e;
    bool m_isUndir;
};

} // namespace nachia


#include <utility>
#include <vector>
#include <algorithm>
#include <cassert>
#include <tuple>

namespace nachia{

class StaticTopTree{
public:
    struct Node{
        int p = -1;
        int l = -1;
        int r = -1;
        int boundaryS = -1;
        int boundaryT = -1;
        enum Type{ TyCompress, TyRake1, TyRake2, TyEdge } ty = TyEdge;
    };

    StaticTopTree(Graph tree, int root = 0){
        int n = tree.numVertices();
        m_n = n;
        std::vector<int> parent;
        std::vector<int> parentEdge;
        assert(tree.numEdges() == n-1);
        assert(0 <= root && root < n);
        m_root = root;
        if(tree.numVertices() == 1){ m_n = 1; return; }
        nachia::CsrArray<int> adj = tree.getAdjacencyArray(true);
        parent.assign(n, -2);
        parentEdge.assign(n, -1);
        std::vector<int> bfs = {m_root};
        bfs.reserve(n);
        parent[m_root] = -1;
        for(int i=0; i<(int)bfs.size(); i++){
            int p = bfs[i];
            for(int nx : adj[p]) if(parent[nx] == -2){
                parent[nx] = p;
                bfs.push_back(nx);
            }
        }
        for(int i=0; i<n; i++) assert(parent[i] != -2); // not connected
        for(int i=0; i<n-1; i++){
            auto& e = tree[i];
            if(parent[e.from] == e.to) e.reverse();
            parentEdge[e.to] = i;
        }
        adj = tree.getAdjacencyArray(false);
        std::vector<int> nd(n, 1);
        for(int i=n-1; i>=1; i--) nd[parent[bfs[i]]] += nd[bfs[i]];
        for(int p=0; p<n; p++) for(int e=1; e<adj[p].size(); e++) if(nd[adj[p][0]] < nd[adj[p][e]]) std::swap(adj[p][0], adj[p][e]);
        m_node.resize(n*2-3);
        for(int i=0; i<n-1; i++) m_node[i].ty = Node::TyEdge;
        std::vector<int> troot(n, -1);
        int trp = n*2-3;
        troot[bfs[0]] = --trp;
        for(int s : bfs) if(parent[s] < 0 || adj[parent[s]][0] != s){
            struct SzNode { int sz, vid, nx; };
            std::vector<SzNode> sznode;
            std::vector<int> Hid = {0};
            if(parent[s] >= 0){
                sznode.push_back({ 1, parentEdge[s], adj[parent[s]][0] });
                Hid.push_back(Hid.back()+1);
            }
            for(int p=s; ; p=adj[p][0]){
                if(adj[p].size() == 0) break;
                for(int e=1; e<adj[p].size(); e++){
                    if(adj[adj[p][e]].size() == 0) sznode.push_back({ 1, parentEdge[adj[p][e]], adj[p][e] });
                    else sznode.push_back({ nd[adj[p][e]], -1, adj[p][e] });
                    Hid.push_back(Hid.back());
                }
                sznode.push_back({ 1, parentEdge[adj[p][0]], adj[p][0] });
                Hid.push_back(Hid.back() + 1);
            }
            struct QueNode{ int p, l, r; };
            std::vector<QueNode> Que = { { troot[s], 0, (int)sznode.size() } };
            Que.reserve(sznode.size() * 2);
            for(int i=0; i<(int)Que.size(); i++){
                int tp = Que[i].p, l = Que[i].l, r = Que[i].r;
                if(r-l == 1){
                    troot[sznode[l].nx] = tp;
                    continue;
                }
                int m = (l + r) / 2;
                if(Hid[l] == Hid[m]) m_node[tp].ty = Node::TyRake2;
                else if(Hid[m] == Hid[r]) m_node[tp].ty = Node::TyRake1;
                else m_node[tp].ty = Node::TyCompress;
                int pl = (m-l == 1) ? sznode[l].vid : -1;
                if(pl == -1) pl = --trp;
                int pr = (r-m == 1) ? sznode[m].vid : -1;
                if(pr == -1) pr = --trp;
                m_node[tp].l = pl;
                m_node[tp].r = pr;
                m_node[pl].p = tp;
                m_node[pr].p = tp;
                Que.push_back({ pl, l, m });
                Que.push_back({ pr, m, r });
            }
        }
        for(int i=0; i<n-1; i++){
            if(parent[tree[i].from] == tree[i].to) tree[i].reverse();
            m_node[i].boundaryS = tree[i].from;
            m_node[i].boundaryT = tree[i].to;
        }
        m_handle.assign(n, -1);
        for(int i=n-1; i<n*2-3; i++){
            auto& v = m_node[i];
            auto& vl = m_node[v.l];
            auto& vr = m_node[v.r];
            switch(v.ty){
            case Node::TyCompress :
                v.boundaryS = vl.boundaryS;
                v.boundaryT = vr.boundaryT;
                m_handle[vl.boundaryT] = i;
                break;
            case Node::TyRake1 :
                v.boundaryS = vl.boundaryS;
                v.boundaryT = vl.boundaryT;
                m_handle[vr.boundaryT] = i;
                break;
            case Node::TyRake2 :
                v.boundaryS = vr.boundaryS;
                v.boundaryT = vr.boundaryT;
                m_handle[vl.boundaryT] = i;
                break;
            case Node::TyEdge :
                break;
            }
        }
    }

    StaticTopTree() : StaticTopTree(Graph(2, {std::make_pair(0,1)})) {}

    int handleOfVtx(int nodeid) const { return m_handle[nodeid]; }
    Node getNode(int nodeid) const { return m_node[nodeid]; }
    int numVertices() const { return m_n; }
    int numNodes() const { return (int)m_node.size(); }

private:
    int m_n;
    int m_root;

    std::vector<Node> m_node;
    std::vector<int> m_handle;
};

} // namespace nachia


#include <vector>
#include <algorithm>
#include <iostream>

int main(){
    std::cin.tie(nullptr);
    std::ios::sync_with_stdio(false);
    using std::cin;
    using std::cout;
    int N; cin >> N;
    nachia::Graph tree(N, true);
    for(int i=0; i<N-1; i++){
        int u, v; cin >> u >> v;
        tree.addEdge(u, v);
    }
    std::vector<int> A(N);
    for(int i=0; i<N; i++){ cin >> A[i]; A[i] *= 2; }

    if(N == 1){
        int Q; cin >> Q;
        for(int i=0; i<Q; i++) cout << "0\n";
        return 0;
    }

    auto st = nachia::StaticTopTree(tree);

    std::vector<std::vector<int>> frac(st.numNodes());
    std::vector<std::vector<long long>> fracsum(st.numNodes());

    using NodeTy = nachia::StaticTopTree::Node::Type;

    auto dfs = [&](auto& dfs, int p) -> const std::vector<int>& {
        auto v = st.getNode(p);
        if(v.ty == v.TyEdge){
            fracsum[p] = {0};
            return frac[p];
        }
        int mid = -1;
        if(v.ty == NodeTy::TyCompress) mid = st.getNode(v.l).boundaryT;
        if(v.ty == NodeTy::TyRake1) mid = st.getNode(v.r).boundaryT;
        if(v.ty == NodeTy::TyRake2) mid = st.getNode(v.l).boundaryT;
        auto& P = dfs(dfs, v.l);
        auto& Q = dfs(dfs, v.r);
        int iP = 0, iQ = 0, iC = 0;
        int f = P.size() + Q.size() + 1;
        std::vector<int> res(f);
        for(int ff=0; ff<f; ff++){
            bool getc = false;
            bool getp = false;
            if(iP == (int)P.size() && iQ == (int)Q.size()){ getc = true; }
            else{
                if(iP == (int)P.size()) getp = false;
                else if(iQ == (int)Q.size()) getp = true;
                else getp = P[iP] < Q[iQ];
                int nxi = getp ? P[iP] : Q[iQ];
                if(iC == 0 && mid < nxi) getc = true;
            }
            if(getc){
                res[ff] = mid; iC = 1;
            }
            else{
                res[ff] = (getp ? P[iP++] : Q[iQ++]);
            }
        }
        std::vector<long long> sum(f+1);
        for(int i=0; i<f; i++) sum[i+1] = sum[i] + A[res[i]];
        frac[p] = std::move(res);
        fracsum[p] = std::move(sum);
        return frac[p];
    };

    auto qarr = dfs(dfs, st.numNodes() - 1);

    std::vector<long long> sumA(N+1);
    for(int i=0; i<N; i++) sumA[i+1] = sumA[i] + A[i];

    std::vector<int> addW(st.numNodes(), 0);
    std::vector<long long> weightBuf(N);

	auto getRange = [&](int nid, int pos) -> int {
		return std::lower_bound(frac[nid].begin(), frac[nid].end(), pos) - frac[nid].begin();
	};

    auto QUERY = [&](int l, int r, int k, int delta) -> int {
        auto WeightOfVtx = [l,r,k,delta,&A](int p) -> long long {
            return ((l <= p && p < r) ? k + A[p] : 0) + ((delta == p) ? 1 : 0);
        };
        int nid = st.numNodes() - 1;
        long long lwt = 0;
        long long rwt = 0;
        long long thres = (sumA[r] - sumA[l] + (long long)(r-l) * k + 1) / 2;
        while(st.getNode(nid).ty != NodeTy::TyEdge){
            auto node = st.getNode(nid);
            auto nodel = st.getNode(node.l);
            auto noder = st.getNode(node.r);
            long long lwtt = 0, rwtt = 0;
            int xl = getRange(node.l, l), yl = getRange(node.r, l);
            int xr = getRange(node.l, r), yr = getRange(node.r, r);
            long long xw = fracsum[node.l][xr] - fracsum[node.l][xl] + (long long)(xr - xl) * k + addW[node.l];
            long long yw = fracsum[node.r][yr] - fracsum[node.r][yl] + (long long)(yr - yl) * k + addW[node.r];
            switch(node.ty){
            case NodeTy::TyCompress : {
                lwtt = lwt + xw + WeightOfVtx(nodel.boundaryS);
                rwtt = rwt + yw + WeightOfVtx(noder.boundaryT);
                if(thres < lwtt){
					nid = node.l;
                    rwt = rwtt;
                }
                else if(thres < rwtt){
					nid = node.r;
                    lwt = lwtt;
                }
                else return nodel.boundaryT;
            } break;
            case NodeTy::TyRake1 : {
                lwtt = lwt + xw + WeightOfVtx(nodel.boundaryS);
                rwtt = rwt + yw + WeightOfVtx(noder.boundaryT);
                if(thres < lwtt){
					nid = node.l;
                    rwt = rwtt;
                }
                else if(thres < rwtt){
					nid = node.r;
                    lwt = lwtt + rwt;
                    rwt = 0;
                }
                else return nodel.boundaryT;
            } break;
            case NodeTy::TyRake2 : {
                lwtt = lwt + xw + WeightOfVtx(nodel.boundaryT);
                rwtt = rwt + yw + WeightOfVtx(noder.boundaryT);
                if(thres < lwtt){
					nid = node.l;
                    lwt = rwtt + lwt;
                    rwt = 0;
                }
                else if(thres < rwtt){
					nid = node.r;
                    lwt = lwtt;
                }
                else return nodel.boundaryS;
            } break;
            default: break;
            }
        }
        auto fnode = st.getNode(nid);
        lwt += WeightOfVtx(fnode.boundaryS);
        rwt += WeightOfVtx(fnode.boundaryT);
        return lwt > rwt ? fnode.boundaryS : fnode.boundaryT;
    };

    int Q; cin >> Q;
    long long sumX = 0;
    for(int q=0; q<Q; q++){
        long long ap, bp, kp, delta; cin >> ap >> bp >> kp >> delta;
        long long a = (ap + sumX % N) % N;
        long long b = (bp + sumX % N * 2) % N;
        long long k = (kp + sumX % 150001 * sumX % 150001) % 150001;
        int l = std::min(a, b);
        int r = std::max(a, b) + 1;
        for(int p=st.handleOfVtx(delta); p>=0; p=st.getNode(p).p) addW[p]++;
        int x = QUERY(l, r, k*2, delta);
        for(int p=st.handleOfVtx(delta); p>=0; p=st.getNode(p).p) addW[p]--;
        sumX += x;
        cout << x << '\n';
    }

    return 0;
}
0