結果
問題 | No.529 帰省ラッシュ |
ユーザー | 草苺奶昔 |
提出日時 | 2023-03-31 18:17:34 |
言語 | Go (1.22.1) |
結果 |
AC
|
実行時間 | 905 ms / 4,500 ms |
コード長 | 19,894 bytes |
コンパイル時間 | 13,187 ms |
コンパイル使用メモリ | 233,028 KB |
実行使用メモリ | 100,112 KB |
最終ジャッジ日時 | 2024-09-22 21:46:33 |
合計ジャッジ時間 | 23,650 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,812 KB |
testcase_02 | AC | 1 ms
6,816 KB |
testcase_03 | AC | 1 ms
6,940 KB |
testcase_04 | AC | 9 ms
6,944 KB |
testcase_05 | AC | 9 ms
6,944 KB |
testcase_06 | AC | 9 ms
6,940 KB |
testcase_07 | AC | 9 ms
6,944 KB |
testcase_08 | AC | 666 ms
58,136 KB |
testcase_09 | AC | 621 ms
58,116 KB |
testcase_10 | AC | 681 ms
69,840 KB |
testcase_11 | AC | 705 ms
65,696 KB |
testcase_12 | AC | 516 ms
51,608 KB |
testcase_13 | AC | 628 ms
86,724 KB |
testcase_14 | AC | 644 ms
72,468 KB |
testcase_15 | AC | 884 ms
100,112 KB |
testcase_16 | AC | 905 ms
93,664 KB |
testcase_17 | AC | 729 ms
86,680 KB |
testcase_18 | AC | 723 ms
88,728 KB |
testcase_19 | AC | 703 ms
80,500 KB |
ソースコード
package main import ( "bufio" "fmt" "os" ) func main() { in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n, m, q int fmt.Fscan(in, &n, &m, &q) adjList := make([][]Edge, n) edges := make([][2]int, m) for i := 0; i < m; i++ { var u, v int fmt.Fscan(in, &u, &v) u-- v-- adjList[u] = append(adjList[u], Edge{u, v, 1, i}) adjList[v] = append(adjList[v], Edge{v, u, 1, i}) edges[i] = [2]int{u, v} } EBCC := NewTwoEdgeConnectedComponents(adjList) EBCC.Build() tree := NewTree(len(EBCC.Group)) for _, e := range edges { // !缩点成树 u, v := e[0], e[1] id1, id2 := EBCC.CompId[u], EBCC.CompId[v] if id1 != id2 { // 桥 tree.AddEdge(id1, id2, 1) } } tree.Build(0) data := make([]E, n) for i := range data { data[i] = E{max_: -INF, index: i} } TM := NewTreeMonoid(tree, data, true) pqs := make([]*Heap, len(EBCC.Group)) // 每个连通分量内的最大值 for i := range pqs { pqs[i] = NewHeap(func(x, y int) bool { return x > y }, nil) } for i := 0; i < q; i++ { var op int fmt.Fscan(in, &op) if op == 1 { var u, w int fmt.Fscan(in, &u, &w) u-- id := EBCC.CompId[u] pqs[id].Push(w) TM.Set(id, E{pqs[id].Peek(), id}) } else { var u, v int fmt.Fscan(in, &u, &v) u-- v-- id1, id2 := EBCC.CompId[u], EBCC.CompId[v] res := TM.QueryPath(id1, id2) if res.max_ == -INF { fmt.Fprintln(out, -1) } else { fmt.Fprintln(out, res.max_) pqs[res.index].Pop() cand := -INF if pqs[res.index].Len() > 0 { cand = pqs[res.index].Peek() } TM.Set(res.index, E{cand, res.index}) } } } } const INF int = 1e18 // MonoidMaxIndex type E = struct{ max_, index int } const IS_COMMUTATIVE = true // 幺半群是否满足交换律 func e() E { return E{max_: -INF, index: -1} } func op(e1, e2 E) E { if e1.max_ > e2.max_ { return e1 } if e1.max_ < e2.max_ { return e2 } return E{e1.max_, min(e1.index, e2.index)} } type Edge = struct{ from, to, cost, index int } type TwoEdgeConnectedComponents struct { Tree [][]Edge // 缩点后各个顶点形成的树 CompId []int // 每个点所属的边双连通分量的编号 Group [][]int // 每个边双连通分量里的点 g [][]Edge lowLink *LowLink k int } func NewTwoEdgeConnectedComponents(g [][]Edge) *TwoEdgeConnectedComponents { return &TwoEdgeConnectedComponents{ g: g, lowLink: NewLowLink(g), } } type TreeMonoid struct { tree *Tree n int unit E isVertex bool seg *_ST segR *_ST } // 树的路径查询 + 单点修改, 维护的量需要满足幺半群的性质. // data: 顶点的值, 或者边的值.(边的编号为两个定点中较深的那个点的编号) // isVertex: data是否为顶点的值以及查询的时候是否是顶点权值. func NewTreeMonoid(tree *Tree, data []E, isVertex bool) *TreeMonoid { n := len(tree.Tree) res := &TreeMonoid{tree: tree, n: n, unit: e(), isVertex: isVertex} leaves := make([]E, n) if isVertex { for v := range leaves { leaves[tree.LID[v]] = data[v] } } else { for i := range leaves { leaves[i] = res.unit } for e := 0; e < n-1; e++ { v := tree.EidtoV(e) leaves[tree.LID[v]] = data[e] } } res.seg = _NewS(leaves, e, op) if !IS_COMMUTATIVE { res.segR = _NewS(leaves, e, func(e1, e2 E) E { return op(e2, e1) }) // opRev } return res } // 第i个顶点或者第i条边的值修改为e. func (tm *TreeMonoid) Set(i int, e E) { if !tm.isVertex { i = tm.tree.EidtoV(i) } i = tm.tree.LID[i] tm.seg.Set(i, e) if !IS_COMMUTATIVE { tm.segR.Set(i, e) } } // 第i个顶点或者第i条边的值与delta进行运算. func (tm *TreeMonoid) Update(i int, delta E) { if !tm.isVertex { i = tm.tree.EidtoV(i) } i = tm.tree.LID[i] tm.seg.Update(i, delta) if !IS_COMMUTATIVE { tm.segR.Update(i, delta) } } // 查询 start 到 target 的路径上的值.(点权/边权 由 isVertex 决定) func (tm *TreeMonoid) QueryPath(start, target int) E { path := tm.tree.GetPathDecomposition(start, target, tm.isVertex) val := tm.unit for _, ab := range path { a, b := ab[0], ab[1] var x E if a <= b { x = tm.seg.Query(a, b+1) } else if IS_COMMUTATIVE { x = tm.seg.Query(b, a+1) } else { x = tm.segR.Query(b, a+1) } val = op(val, x) } return val } // 找到路径上最后一个 x 使得 QueryPath(start,x) 满足check函数.不存在返回-1. func (tm *TreeMonoid) MaxPath(check func(E) bool, start, target int) int { if !tm.isVertex { return tm._maxPathEdge(check, start, target) } if !check(tm.QueryPath(start, start)) { return -1 } path := tm.tree.GetPathDecomposition(start, target, tm.isVertex) val := tm.unit for _, ab := range path { a, b := ab[0], ab[1] var x E if a <= b { x = tm.seg.Query(a, b+1) } else if IS_COMMUTATIVE { x = tm.seg.Query(b, a+1) } else { x = tm.segR.Query(b, a+1) } if tmp := op(val, x); check(tmp) { val = tmp start = tm.tree.idToNode[b] continue } checkTmp := func(x E) bool { return check(op(val, x)) } if a <= b { i := tm.seg.MaxRight(a, checkTmp) if i == a { return start } return tm.tree.idToNode[i-1] } else { var i int if IS_COMMUTATIVE { i = tm.seg.MinLeft(a+1, checkTmp) } else { i = tm.segR.MinLeft(a+1, checkTmp) } if i == a+1 { return start } return tm.tree.idToNode[i] } } return target } func (tm *TreeMonoid) QuerySubtree(root int) E { l, r := tm.tree.LID[root], tm.tree.RID[root] offset := 1 if tm.isVertex { offset = 0 } return tm.seg.Query(l+offset, r) } func (tm *TreeMonoid) _maxPathEdge(check func(E) bool, u, v int) int { lca := tm.tree.LCA(u, v) path := tm.tree.GetPathDecomposition(u, lca, tm.isVertex) val := tm.unit // climb for _, ab := range path { a, b := ab[0], ab[1] var x E if IS_COMMUTATIVE { x = tm.seg.Query(b, a+1) } else { x = tm.segR.Query(b, a+1) } if tmp := op(val, x); check(tmp) { val = tmp u = tm.tree.Parent[tm.tree.idToNode[b]] continue } checkTmp := func(x E) bool { return check(op(val, x)) } var i int if IS_COMMUTATIVE { i = tm.seg.MinLeft(a+1, checkTmp) } else { i = tm.segR.MinLeft(a+1, checkTmp) } if i == a+1 { return u } return tm.tree.Parent[tm.tree.idToNode[i]] } // down path = tm.tree.GetPathDecomposition(lca, v, tm.isVertex) for _, ab := range path { a, b := ab[0], ab[1] x := tm.seg.Query(a, b+1) if tmp := op(val, x); check(tmp) { val = tmp u = tm.tree.idToNode[b] continue } checkTmp := func(x E) bool { return check(op(val, x)) } i := tm.seg.MaxRight(a, checkTmp) if i == a { return u } return tm.tree.idToNode[i-1] } return v } type Tree struct { Tree [][][2]int // (next, weight) Edges [][3]int // (u, v, w) Depth, DepthWeighted []int Parent []int LID, RID []int // 欧拉序[in,out) idToNode []int top, heavySon []int timer int } func NewTree(n int) *Tree { tree := make([][][2]int, n) lid := make([]int, n) rid := make([]int, n) idToNode := make([]int, n) top := make([]int, n) // 所处轻/重链的顶点(深度最小),轻链的顶点为自身 depth := make([]int, n) // 深度 depthWeighted := make([]int, n) parent := make([]int, n) // 父结点 heavySon := make([]int, n) // 重儿子 edges := make([][3]int, 0, n-1) for i := range parent { parent[i] = -1 } return &Tree{ Tree: tree, Depth: depth, DepthWeighted: depthWeighted, Parent: parent, LID: lid, RID: rid, idToNode: idToNode, top: top, heavySon: heavySon, Edges: edges, } } // 添加无向边 u-v, 边权为w. func (tree *Tree) AddEdge(u, v, w int) { tree.Tree[u] = append(tree.Tree[u], [2]int{v, w}) tree.Tree[v] = append(tree.Tree[v], [2]int{u, w}) tree.Edges = append(tree.Edges, [3]int{u, v, w}) } // 添加有向边 u->v, 边权为w. func (tree *Tree) AddDirectedEdge(u, v, w int) { tree.Tree[u] = append(tree.Tree[u], [2]int{v, w}) tree.Edges = append(tree.Edges, [3]int{u, v, w}) } // root:0-based // 当root设为-1时,会从0开始遍历未访问过的连通分量 func (tree *Tree) Build(root int) { if root != -1 { tree.build(root, -1, 0, 0) tree.markTop(root, root) } else { for i := 0; i < len(tree.Tree); i++ { if tree.Parent[i] == -1 { tree.build(i, -1, 0, 0) tree.markTop(i, i) } } } } // 返回 root 的欧拉序区间, 左闭右开, 0-indexed. func (tree *Tree) Id(root int) (int, int) { return tree.LID[root], tree.RID[root] } // 返回边 u-v 对应的 欧拉序起点编号, 0-indexed. func (tree *Tree) Eid(u, v int) int { if tree.LID[u] > tree.LID[v] { return tree.LID[u] } return tree.LID[v] } // 较深的那个点作为边的编号. func (tree *Tree) EidtoV(eid int) int { e := tree.Edges[eid] u, v := e[0], e[1] if tree.Parent[u] == v { return u } return v } func (tree *Tree) LCA(u, v int) int { for { if tree.LID[u] > tree.LID[v] { u, v = v, u } if tree.top[u] == tree.top[v] { return u } v = tree.Parent[tree.top[v]] } } func (tree *Tree) Dist(u, v int, weighted bool) int { if weighted { return tree.DepthWeighted[u] + tree.DepthWeighted[v] - 2*tree.DepthWeighted[tree.LCA(u, v)] } return tree.Depth[u] + tree.Depth[v] - 2*tree.Depth[tree.LCA(u, v)] } // k: 0-based // 如果不存在第k个祖先,返回-1 func (tree *Tree) KthAncestor(root, k int) int { if k > tree.Depth[root] { return -1 } for { u := tree.top[root] if tree.LID[root]-k >= tree.LID[u] { return tree.idToNode[tree.LID[root]-k] } k -= tree.LID[root] - tree.LID[u] + 1 root = tree.Parent[u] } } // 从 from 节点跳向 to 节点,跳过 step 个节点(0-indexed) // 返回跳到的节点,如果不存在这样的节点,返回-1 func (tree *Tree) Jump(from, to, step int) int { if step == 1 { if from == to { return -1 } if tree.IsInSubtree(to, from) { return tree.KthAncestor(to, tree.Depth[to]-tree.Depth[from]-1) } return tree.Parent[from] } c := tree.LCA(from, to) dac := tree.Depth[from] - tree.Depth[c] dbc := tree.Depth[to] - tree.Depth[c] if step > dac+dbc { return -1 } if step <= dac { return tree.KthAncestor(from, step) } return tree.KthAncestor(to, dac+dbc-step) } func (tree *Tree) CollectChild(root int) []int { res := []int{} for _, e := range tree.Tree[root] { next := e[0] if next != tree.Parent[root] { res = append(res, next) } } return res } // 返回沿着`路径顺序`的 [起点,终点] 的 欧拉序 `左闭右闭` 数组. // !eg:[[2 0] [4 4]] 沿着路径顺序但不一定沿着欧拉序. func (tree *Tree) GetPathDecomposition(u, v int, vertex bool) [][2]int { up, down := [][2]int{}, [][2]int{} for { if tree.top[u] == tree.top[v] { break } if tree.LID[u] < tree.LID[v] { down = append(down, [2]int{tree.LID[tree.top[v]], tree.LID[v]}) v = tree.Parent[tree.top[v]] } else { up = append(up, [2]int{tree.LID[u], tree.LID[tree.top[u]]}) u = tree.Parent[tree.top[u]] } } edgeInt := 1 if vertex { edgeInt = 0 } if tree.LID[u] < tree.LID[v] { down = append(down, [2]int{tree.LID[u] + edgeInt, tree.LID[v]}) } else if tree.LID[v]+edgeInt <= tree.LID[u] { up = append(up, [2]int{tree.LID[u], tree.LID[v] + edgeInt}) } for i := 0; i < len(down)/2; i++ { down[i], down[len(down)-1-i] = down[len(down)-1-i], down[i] } return append(up, down...) } func (tree *Tree) GetPath(u, v int) []int { res := []int{} composition := tree.GetPathDecomposition(u, v, true) for _, e := range composition { a, b := e[0], e[1] if a <= b { for i := a; i <= b; i++ { res = append(res, tree.idToNode[i]) } } else { for i := a; i >= b; i-- { res = append(res, tree.idToNode[i]) } } } return res } func (tree *Tree) SubtreeSize(u int) int { return tree.RID[u] - tree.LID[u] } // child 是否在 root 的子树中 (child和root不能相等) func (tree *Tree) IsInSubtree(child, root int) bool { return tree.LID[root] <= tree.LID[child] && tree.LID[child] < tree.RID[root] } func (tree *Tree) ELID(u int) int { return 2*tree.LID[u] - tree.Depth[u] } func (tree *Tree) ERID(u int) int { return 2*tree.RID[u] - tree.Depth[u] - 1 } func (tree *Tree) build(cur, pre, dep, dist int) int { subSize, heavySize, heavySon := 1, 0, -1 for _, e := range tree.Tree[cur] { next, weight := e[0], e[1] if next != pre { nextSize := tree.build(next, cur, dep+1, dist+weight) subSize += nextSize if nextSize > heavySize { heavySize, heavySon = nextSize, next } } } tree.Depth[cur] = dep tree.DepthWeighted[cur] = dist tree.heavySon[cur] = heavySon tree.Parent[cur] = pre return subSize } func (tree *Tree) markTop(cur, top int) { tree.top[cur] = top tree.LID[cur] = tree.timer tree.idToNode[tree.timer] = cur tree.timer++ if tree.heavySon[cur] != -1 { tree.markTop(tree.heavySon[cur], top) for _, e := range tree.Tree[cur] { next := e[0] if next != tree.heavySon[cur] && next != tree.Parent[cur] { tree.markTop(next, next) } } } tree.RID[cur] = tree.timer } // // type _ST struct { n, size int seg []E e func() E op func(E, E) E unit E } func _NewS(leaves []E, e func() E, op func(E, E) E) *_ST { res := &_ST{e: e, op: op, unit: e()} n := len(leaves) size := 1 for size < n { size <<= 1 } seg := make([]E, size<<1) for i := 0; i < n; i++ { seg[i+size] = leaves[i] } for i := size - 1; i > 0; i-- { seg[i] = op(seg[i<<1], seg[i<<1|1]) } res.n = n res.size = size res.seg = seg return res } func (st *_ST) Get(index int) E { if index < 0 || index >= st.n { return st.unit } return st.seg[index+st.size] } func (st *_ST) Set(index int, value E) { if index < 0 || index >= st.n { return } index += st.size st.seg[index] = value for index >>= 1; index > 0; index >>= 1 { st.seg[index] = st.op(st.seg[index<<1], st.seg[index<<1|1]) } } func (st *_ST) Update(index int, value E) { if index < 0 || index >= st.n { return } index += st.size st.seg[index] = st.op(st.seg[index], value) for index >>= 1; index > 0; index >>= 1 { st.seg[index] = st.op(st.seg[index<<1], st.seg[index<<1|1]) } } // [start, end) func (st *_ST) Query(start, end int) E { if start < 0 { start = 0 } if end > st.n { end = st.n } if start >= end { return st.unit } leftRes, rightRes := st.unit, st.unit start += st.size end += st.size for start < end { if start&1 == 1 { leftRes = st.op(leftRes, st.seg[start]) start++ } if end&1 == 1 { end-- rightRes = st.op(st.seg[end], rightRes) } start >>= 1 end >>= 1 } return st.op(leftRes, rightRes) } func (st *_ST) QueryAll() E { return st.seg[1] } // 二分查询最大的 right 使得切片 [left:right] 内的值满足 predicate func (st *_ST) MaxRight(left int, predicate func(E) bool) int { if left == st.n { return st.n } left += st.size res := st.unit for { for left&1 == 0 { left >>= 1 } if !predicate(st.op(res, st.seg[left])) { for left < st.size { left <<= 1 if predicate(st.op(res, st.seg[left])) { res = st.op(res, st.seg[left]) left++ } } return left - st.size } res = st.op(res, st.seg[left]) left++ if (left & -left) == left { break } } return st.n } // 二分查询最小的 left 使得切片 [left:right] 内的值满足 predicate func (st *_ST) MinLeft(right int, predicate func(E) bool) int { if right == 0 { return 0 } right += st.size res := st.unit for { right-- for right > 1 && right&1 == 1 { right >>= 1 } if !predicate(st.op(st.seg[right], res)) { for right < st.size { right = right<<1 | 1 if predicate(st.op(st.seg[right], res)) { res = st.op(st.seg[right], res) right-- } } return right + 1 - st.size } res = st.op(st.seg[right], res) if right&-right == right { break } } return 0 } func (tec *TwoEdgeConnectedComponents) Build() { tec.lowLink.Build() tec.CompId = make([]int, len(tec.g)) for i := 0; i < len(tec.g); i++ { tec.CompId[i] = -1 } for i := 0; i < len(tec.g); i++ { if tec.CompId[i] == -1 { tec.dfs(i, -1) } } tec.Group = make([][]int, tec.k) for i := 0; i < len(tec.g); i++ { tec.Group[tec.CompId[i]] = append(tec.Group[tec.CompId[i]], i) } tec.Tree = make([][]Edge, tec.k) for _, e := range tec.lowLink.Bridge { tec.Tree[tec.CompId[e.from]] = append(tec.Tree[tec.CompId[e.from]], Edge{tec.CompId[e.from], tec.CompId[e.to], e.cost, e.index}) tec.Tree[tec.CompId[e.to]] = append(tec.Tree[tec.CompId[e.to]], Edge{tec.CompId[e.to], tec.CompId[e.from], e.cost, e.index}) } } // 每个点所属的边双连通分量的编号. func (tec *TwoEdgeConnectedComponents) Get(k int) int { return tec.CompId[k] } func (tec *TwoEdgeConnectedComponents) dfs(idx, par int) { if par >= 0 && tec.lowLink.ord[par] >= tec.lowLink.low[idx] { tec.CompId[idx] = tec.CompId[par] } else { tec.CompId[idx] = tec.k tec.k++ } for _, e := range tec.g[idx] { if tec.CompId[e.to] == -1 { tec.dfs(e.to, idx) } } } type LowLink struct { Articulation []int // 関節点 Bridge []Edge // 橋 g [][]Edge ord, low []int used []bool } func NewLowLink(g [][]Edge) *LowLink { return &LowLink{g: g} } func (ll *LowLink) Build() { ll.used = make([]bool, len(ll.g)) ll.ord = make([]int, len(ll.g)) ll.low = make([]int, len(ll.g)) k := 0 for i := 0; i < len(ll.g); i++ { if !ll.used[i] { k = ll.dfs(i, k, -1) } } } func (ll *LowLink) dfs(idx, k, par int) int { ll.used[idx] = true ll.ord[idx] = k k++ ll.low[idx] = ll.ord[idx] isArticulation := false beet := false cnt := 0 for _, e := range ll.g[idx] { if e.to == par { tmp := beet beet = true if !tmp { continue } } if !ll.used[e.to] { cnt++ k = ll.dfs(e.to, k, idx) ll.low[idx] = min(ll.low[idx], ll.low[e.to]) if par >= 0 && ll.low[e.to] >= ll.ord[idx] { isArticulation = true } if ll.ord[idx] < ll.low[e.to] { ll.Bridge = append(ll.Bridge, e) } } else { ll.low[idx] = min(ll.low[idx], ll.ord[e.to]) } } if par == -1 && cnt > 1 { isArticulation = true } if isArticulation { ll.Articulation = append(ll.Articulation, idx) } return k } func min(a, b int) int { if a < b { return a } return b } type H = int func NewHeap(less func(a, b H) bool, nums []H) *Heap { nums = append(nums[:0:0], nums...) heap := &Heap{less: less, data: nums} heap.heapify() return heap } type Heap struct { data []H less func(a, b H) bool } func (h *Heap) Push(value H) { h.data = append(h.data, value) h.pushUp(h.Len() - 1) } func (h *Heap) Pop() (value H) { if h.Len() == 0 { panic("heap is empty") } value = h.data[0] h.data[0] = h.data[h.Len()-1] h.data = h.data[:h.Len()-1] h.pushDown(0) return } func (h *Heap) Peek() (value H) { if h.Len() == 0 { panic("heap is empty") } value = h.data[0] return } func (h *Heap) Len() int { return len(h.data) } func (h *Heap) heapify() { n := h.Len() for i := (n >> 1) - 1; i > -1; i-- { h.pushDown(i) } } func (h *Heap) pushUp(root int) { for parent := (root - 1) >> 1; parent >= 0 && h.less(h.data[root], h.data[parent]); parent = (root - 1) >> 1 { h.data[root], h.data[parent] = h.data[parent], h.data[root] root = parent } } func (h *Heap) pushDown(root int) { n := h.Len() for left := (root<<1 + 1); left < n; left = (root<<1 + 1) { right := left + 1 minIndex := root if h.less(h.data[left], h.data[minIndex]) { minIndex = left } if right < n && h.less(h.data[right], h.data[minIndex]) { minIndex = right } if minIndex == root { return } h.data[root], h.data[minIndex] = h.data[minIndex], h.data[root] root = minIndex } }