結果
| 問題 |
No.2258 The Jikka Tree
|
| ユーザー |
Nachia
|
| 提出日時 | 2023-03-31 19:11:56 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,524 ms / 4,000 ms |
| コード長 | 16,667 bytes |
| コンパイル時間 | 2,098 ms |
| コンパイル使用メモリ | 113,180 KB |
| 最終ジャッジ日時 | 2025-02-11 19:41:46 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 75 |
ソースコード
#include <utility>
#include <vector>
#include <algorithm>
namespace nachia{
template<class Elem>
class CsrArray{
public:
struct ListRange{
using iterator = typename std::vector<Elem>::iterator;
iterator begi, endi;
iterator begin() const { return begi; }
iterator end() const { return endi; }
int size() const { return (int)std::distance(begi, endi); }
Elem& operator[](int i) const { return begi[i]; }
};
struct ConstListRange{
using iterator = typename std::vector<Elem>::const_iterator;
iterator begi, endi;
iterator begin() const { return begi; }
iterator end() const { return endi; }
int size() const { return (int)std::distance(begi, endi); }
const Elem& operator[](int i) const { return begi[i]; }
};
private:
int m_n;
std::vector<Elem> m_list;
std::vector<int> m_pos;
public:
CsrArray() : m_n(0), m_list(), m_pos() {}
static CsrArray Construct(int n, std::vector<std::pair<int, Elem>> items){
CsrArray res;
res.m_n = n;
std::vector<int> buf(n+1, 0);
for(auto& [u,v] : items){ ++buf[u]; }
for(int i=1; i<=n; i++) buf[i] += buf[i-1];
res.m_list.resize(buf[n]);
for(int i=(int)items.size()-1; i>=0; i--){
res.m_list[--buf[items[i].first]] = std::move(items[i].second);
}
res.m_pos = std::move(buf);
return res;
}
static CsrArray FromRaw(std::vector<Elem> list, std::vector<int> pos){
CsrArray res;
res.m_n = pos.size() - 1;
res.m_list = std::move(list);
res.m_pos = std::move(pos);
return res;
}
ListRange operator[](int u) { return ListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
ConstListRange operator[](int u) const { return ConstListRange{ m_list.begin() + m_pos[u], m_list.begin() + m_pos[u+1] }; }
int size() const { return m_n; }
int fullSize() const { return (int)m_list.size(); }
};
} // namespace nachia
#include <vector>
#include <utility>
#include <cassert>
namespace nachia{
struct Graph {
public:
struct Edge{
int from, to;
void reverse(){ std::swap(from, to); }
};
using Base = std::vector<std::pair<int, int>>;
Graph(int n = 0, bool undirected = false, int m = 0) : m_n(n), m_e(m), m_isUndir(undirected) {}
Graph(int n, const std::vector<std::pair<int, int>>& edges, bool undirected = false) : m_n(n), m_isUndir(undirected){
m_e.resize(edges.size());
for(std::size_t i=0; i<edges.size(); i++) m_e[i] = { edges[i].first, edges[i].second };
}
template<class Cin>
static Graph Input(Cin& cin, int n, bool undirected, int m, bool offset = 0){
Graph res(n, undirected, m);
for(int i=0; i<m; i++){
int u, v; cin >> u >> v;
res[i].from = u - offset;
res[i].to = v - offset;
}
return res;
}
int numVertices() const noexcept { return m_n; }
int numEdges() const noexcept { return int(m_e.size()); }
int addNode() noexcept { return m_n++; }
int addEdge(int from, int to){ m_e.push_back({ from, to }); return numEdges() - 1; }
Edge& operator[](int ei) noexcept { return m_e[ei]; }
const Edge& operator[](int ei) const noexcept { return m_e[ei]; }
Edge& at(int ei) { return m_e.at(ei); }
const Edge& at(int ei) const { return m_e.at(ei); }
auto begin(){ return m_e.begin(); }
auto end(){ return m_e.end(); }
auto begin() const { return m_e.begin(); }
auto end() const { return m_e.end(); }
bool isUndirected() const noexcept { return m_isUndir; }
void reverseEdges() noexcept { for(auto& e : m_e) e.reverse(); }
void contract(int newV, const std::vector<int>& mapping){
assert(numVertices() == int(mapping.size()));
for(int i=0; i<numVertices(); i++) assert(0 <= mapping[i] && mapping[i] < newV);
for(auto& e : m_e){ e.from = mapping[e.from]; e.to = mapping[e.to]; }
}
std::vector<Graph> induce(int num, const std::vector<int>& mapping) const {
int n = numVertices();
assert(n == int(mapping.size()));
for(int i=0; i<n; i++) assert(-1 <= mapping[i] && mapping[i] < num);
std::vector<int> indexV(n), newV(num);
for(int i=0; i<n; i++) if(mapping[i] >= 0) indexV[i] = newV[mapping[i]]++;
std::vector<Graph> res; res.reserve(num);
for(int i=0; i<num; i++) res.emplace_back(newV[i], isUndirected());
for(auto e : m_e) if(mapping[e.from] == mapping[e.to] && mapping[e.to] >= 0) res[mapping[e.to]].addEdge(indexV[e.from], indexV[e.to]);
return res;
}
CsrArray<int> getEdgeIndexArray(bool undirected) const {
std::vector<std::pair<int, int>> src;
src.reserve(numEdges() * (undirected ? 2 : 1));
for(int i=0; i<numEdges(); i++){
auto e = operator[](i);
src.emplace_back(e.from, i);
if(undirected) src.emplace_back(e.to, i);
}
return CsrArray<int>::Construct(numVertices(), src);
}
CsrArray<int> getEdgeIndexArray() const { return getEdgeIndexArray(isUndirected()); }
CsrArray<int> getAdjacencyArray(bool undirected) const {
std::vector<std::pair<int, int>> src;
src.reserve(numEdges() * (undirected ? 2 : 1));
for(auto e : m_e){
src.emplace_back(e.from, e.to);
if(undirected) src.emplace_back(e.to, e.from);
}
return CsrArray<int>::Construct(numVertices(), src);
}
CsrArray<int> getAdjacencyArray() const { return getAdjacencyArray(isUndirected()); }
private:
int m_n;
std::vector<Edge> m_e;
bool m_isUndir;
};
} // namespace nachia
#include <utility>
#include <vector>
#include <algorithm>
#include <cassert>
#include <tuple>
namespace nachia{
class StaticTopTree{
public:
struct Node{
int p = -1;
int l = -1;
int r = -1;
int boundaryS = -1;
int boundaryT = -1;
enum Type{ TyCompress, TyRake1, TyRake2, TyEdge } ty = TyEdge;
};
StaticTopTree(Graph tree, int root = 0){
int n = tree.numVertices();
m_n = n;
std::vector<int> parent;
std::vector<int> parentEdge;
assert(tree.numEdges() == n-1);
assert(0 <= root && root < n);
m_root = root;
if(tree.numVertices() == 1){ m_n = 1; return; }
nachia::CsrArray<int> adj = tree.getAdjacencyArray(true);
parent.assign(n, -2);
parentEdge.assign(n, -1);
std::vector<int> bfs = {m_root};
bfs.reserve(n);
parent[m_root] = -1;
for(int i=0; i<(int)bfs.size(); i++){
int p = bfs[i];
for(int nx : adj[p]) if(parent[nx] == -2){
parent[nx] = p;
bfs.push_back(nx);
}
}
for(int i=0; i<n; i++) assert(parent[i] != -2); // not connected
for(int i=0; i<n-1; i++){
auto& e = tree[i];
if(parent[e.from] == e.to) e.reverse();
parentEdge[e.to] = i;
}
adj = tree.getAdjacencyArray(false);
std::vector<int> nd(n, 1);
for(int i=n-1; i>=1; i--) nd[parent[bfs[i]]] += nd[bfs[i]];
for(int p=0; p<n; p++) for(int e=1; e<adj[p].size(); e++) if(nd[adj[p][0]] < nd[adj[p][e]]) std::swap(adj[p][0], adj[p][e]);
m_node.resize(n*2-3);
for(int i=0; i<n-1; i++) m_node[i].ty = Node::TyEdge;
std::vector<int> troot(n, -1);
int trp = n*2-3;
troot[bfs[0]] = --trp;
for(int s : bfs) if(parent[s] < 0 || adj[parent[s]][0] != s){
struct SzNode { int sz, vid, nx; };
std::vector<SzNode> sznode;
std::vector<int> Hid = {0};
std::vector<int> boundarySize;
if(parent[s] >= 0){
sznode.push_back({ 1, parentEdge[s], adj[parent[s]][0] });
Hid.push_back(Hid.back()+1);
}
for(int p=s; ; p=adj[p][0]){
if(adj[p].size() == 0) break;
for(int e=1; e<adj[p].size(); e++){
if(adj[adj[p][e]].size() == 0) sznode.push_back({ 1, parentEdge[adj[p][e]], adj[p][e] });
else sznode.push_back({ nd[adj[p][e]], -1, adj[p][e] });
Hid.push_back(Hid.back());
}
sznode.push_back({ 1, parentEdge[adj[p][0]], adj[p][0] });
Hid.push_back(Hid.back() + 1);
}
boundarySize.assign(sznode.size()+1, 0);
for(int i=0; i<(int)sznode.size(); i++) boundarySize[i+1] = boundarySize[i] + sznode[i].sz;
struct QueNode{ int p, l, r; };
std::vector<QueNode> Que = { { troot[s], 0, (int)sznode.size() } };
Que.reserve(sznode.size() * 2);
for(int i=0; i<(int)Que.size(); i++){
int tp = Que[i].p, l = Que[i].l, r = Que[i].r;
if(r-l == 1){
troot[sznode[l].nx] = tp;
continue;
}
int m = Que[i].l;
while(boundarySize[m] - boundarySize[l] < boundarySize[r] - boundarySize[m+1]) m++;
if(Hid[l] == Hid[m]) m_node[tp].ty = Node::TyRake2;
else if(Hid[m] == Hid[r]) m_node[tp].ty = Node::TyRake1;
else m_node[tp].ty = Node::TyCompress;
int pl = (m-l == 1) ? sznode[l].vid : -1;
if(pl == -1) pl = --trp;
int pr = (r-m == 1) ? sznode[m].vid : -1;
if(pr == -1) pr = --trp;
m_node[tp].l = pl;
m_node[tp].r = pr;
m_node[pl].p = tp;
m_node[pr].p = tp;
Que.push_back({ pl, l, m });
Que.push_back({ pr, m, r });
}
}
for(int i=0; i<n-1; i++){
if(parent[tree[i].from] == tree[i].to) tree[i].reverse();
m_node[i].boundaryS = tree[i].from;
m_node[i].boundaryT = tree[i].to;
}
m_handle.assign(n, -1);
for(int i=n-1; i<n*2-3; i++){
auto& v = m_node[i];
auto& vl = m_node[v.l];
auto& vr = m_node[v.r];
switch(v.ty){
case Node::TyCompress :
v.boundaryS = vl.boundaryS;
v.boundaryT = vr.boundaryT;
m_handle[vl.boundaryT] = i;
break;
case Node::TyRake1 :
v.boundaryS = vl.boundaryS;
v.boundaryT = vl.boundaryT;
m_handle[vr.boundaryT] = i;
break;
case Node::TyRake2 :
v.boundaryS = vr.boundaryS;
v.boundaryT = vr.boundaryT;
m_handle[vl.boundaryT] = i;
break;
case Node::TyEdge :
break;
}
}
}
StaticTopTree() : StaticTopTree(Graph(2, {std::make_pair(0,1)})) {}
int handleOfVtx(int nodeid) const { return m_handle[nodeid]; }
Node getNode(int nodeid) const { return m_node[nodeid]; }
int numVertices() const { return m_n; }
int numNodes() const { return (int)m_node.size(); }
private:
int m_n;
int m_root;
std::vector<Node> m_node;
std::vector<int> m_handle;
};
} // namespace nachia
#include <vector>
#include <algorithm>
#include <iostream>
int main(){
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
using std::cin;
using std::cout;
int N; cin >> N;
nachia::Graph tree(N, true);
for(int i=0; i<N-1; i++){
int u, v; cin >> u >> v;
tree.addEdge(u, v);
}
std::vector<int> A(N);
for(int i=0; i<N; i++){ cin >> A[i]; A[i] *= 2; }
if(N == 1){
int Q; cin >> Q;
for(int i=0; i<Q; i++) cout << "0\n";
return 0;
}
auto st = nachia::StaticTopTree(tree);
std::vector<std::vector<int>> frac(st.numNodes());
std::vector<std::vector<long long>> fracsum(st.numNodes());
using NodeTy = nachia::StaticTopTree::Node::Type;
auto dfs = [&](auto& dfs, int p) -> const std::vector<int>& {
auto v = st.getNode(p);
if(v.ty == v.TyEdge){
fracsum[p] = {0};
return frac[p];
}
int mid = -1;
if(v.ty == NodeTy::TyCompress) mid = st.getNode(v.l).boundaryT;
if(v.ty == NodeTy::TyRake1) mid = st.getNode(v.r).boundaryT;
if(v.ty == NodeTy::TyRake2) mid = st.getNode(v.l).boundaryT;
auto& P = dfs(dfs, v.l);
auto& Q = dfs(dfs, v.r);
int f = P.size() + Q.size() + 1;
std::vector<int> res(f);
std::copy(P.begin(), P.end(), res.begin());
std::copy(Q.begin(), Q.end(), res.begin() + P.size());
res.back() = mid;
std::sort(res.begin(), res.end());
std::vector<long long> sum(f+1);
for(int i=0; i<f; i++) sum[i+1] = sum[i] + A[res[i]];
frac[p] = std::move(res);
fracsum[p] = std::move(sum);
return frac[p];
};
auto qarr = dfs(dfs, st.numNodes() - 1);
std::vector<long long> sumA(N+1);
for(int i=0; i<N; i++) sumA[i+1] = sumA[i] + A[i];
std::vector<int> addW(st.numNodes(), 0);
std::vector<long long> weightBuf(N);
auto getRange = [&](int nid, int pos) -> int {
return std::lower_bound(frac[nid].begin(), frac[nid].end(), pos) - frac[nid].begin();
};
auto QUERY = [&](int l, int r, int k, int delta) -> int {
auto WeightOfVtx = [l,r,k,delta,&A](int p) -> long long {
return ((l <= p && p < r) ? k + A[p] : 0) + ((delta == p) ? 1 : 0);
};
int nid = st.numNodes() - 1;
long long lwt = 0;
long long rwt = 0;
long long thres = (sumA[r] - sumA[l] + (long long)(r-l) * k + 1) / 2;
while(st.getNode(nid).ty != NodeTy::TyEdge){
auto node = st.getNode(nid);
auto nodel = st.getNode(node.l);
auto noder = st.getNode(node.r);
long long lwtt = 0, rwtt = 0;
int xl = getRange(node.l, l), yl = getRange(node.r, l);
int xr = getRange(node.l, r), yr = getRange(node.r, r);
long long xw = fracsum[node.l][xr] - fracsum[node.l][xl] + (long long)(xr - xl) * k + addW[node.l];
long long yw = fracsum[node.r][yr] - fracsum[node.r][yl] + (long long)(yr - yl) * k + addW[node.r];
switch(node.ty){
case NodeTy::TyCompress : {
lwtt = lwt + xw + WeightOfVtx(nodel.boundaryS);
rwtt = rwt + yw + WeightOfVtx(noder.boundaryT);
if(thres < lwtt){
nid = node.l;
rwt = rwtt;
}
else if(thres < rwtt){
nid = node.r;
lwt = lwtt;
}
else return nodel.boundaryT;
} break;
case NodeTy::TyRake1 : {
lwtt = lwt + xw + WeightOfVtx(nodel.boundaryS);
rwtt = rwt + yw + WeightOfVtx(noder.boundaryT);
if(thres < lwtt){
nid = node.l;
rwt = rwtt;
}
else if(thres < rwtt){
nid = node.r;
lwt = lwtt + rwt;
rwt = 0;
}
else return nodel.boundaryT;
} break;
case NodeTy::TyRake2 : {
lwtt = lwt + xw + WeightOfVtx(nodel.boundaryT);
rwtt = rwt + yw + WeightOfVtx(noder.boundaryT);
if(thres < lwtt){
nid = node.l;
lwt = rwtt + lwt;
rwt = 0;
}
else if(thres < rwtt){
nid = node.r;
lwt = lwtt;
}
else return nodel.boundaryS;
} break;
default: break;
}
}
auto fnode = st.getNode(nid);
lwt += WeightOfVtx(fnode.boundaryS);
rwt += WeightOfVtx(fnode.boundaryT);
return lwt > rwt ? fnode.boundaryS : fnode.boundaryT;
};
int Q; cin >> Q;
long long sumX = 0;
for(int q=0; q<Q; q++){
long long ap, bp, kp, delta; cin >> ap >> bp >> kp >> delta;
long long a = (ap + sumX % N) % N;
long long b = (bp + sumX % N * 2) % N;
long long k = (kp + sumX % 150001 * sumX % 150001) % 150001;
int l = std::min(a, b);
int r = std::max(a, b) + 1;
for(int p=st.handleOfVtx(delta); p>=0; p=st.getNode(p).p) addW[p]++;
int x = QUERY(l, r, k*2, delta);
for(int p=st.handleOfVtx(delta); p>=0; p=st.getNode(p).p) addW[p]--;
sumX += x;
cout << x << '\n';
}
return 0;
}
Nachia