結果
問題 | No.125 悪の花弁 |
ユーザー | anta |
提出日時 | 2015-01-12 00:19:57 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 170 ms / 5,000 ms |
コード長 | 5,243 bytes |
コンパイル時間 | 1,082 ms |
コンパイル使用メモリ | 106,100 KB |
実行使用メモリ | 19,776 KB |
最終ジャッジ日時 | 2024-06-22 04:11:15 |
合計ジャッジ時間 | 1,931 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 29 ms
14,992 KB |
testcase_01 | AC | 170 ms
15,488 KB |
testcase_02 | AC | 73 ms
19,776 KB |
testcase_03 | AC | 74 ms
19,748 KB |
testcase_04 | AC | 37 ms
19,352 KB |
testcase_05 | AC | 36 ms
19,492 KB |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:164:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 164 | scanf("%d", &K); | ~~~~~^~~~~~~~~~ main.cpp:166:24: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 166 | rep(i, K) scanf("%d", &C[i]); | ~~~~~^~~~~~~~~~~~~
ソースコード
#include <string> #include <vector> #include <algorithm> #include <numeric> #include <set> #include <map> #include <queue> #include <iostream> #include <sstream> #include <cstdio> #include <cmath> #include <ctime> #include <cstring> #include <cctype> #include <cassert> #include <limits> #include <functional> #define rep(i,n) for(int (i)=0;(i)<(int)(n);++(i)) #define rer(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i)) #define reu(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i)) #if defined(_MSC_VER) || __cplusplus > 199711L #define aut(r,v) auto r = (v) #else #define aut(r,v) __typeof(v) r = (v) #endif #define each(it,o) for(aut(it, (o).begin()); it != (o).end(); ++ it) #define all(o) (o).begin(), (o).end() #define pb(x) push_back(x) #define mp(x,y) make_pair((x),(y)) #define mset(m,v) memset(m,v,sizeof(m)) #define INF 0x3f3f3f3f #define INFL 0x3f3f3f3f3f3f3f3fLL using namespace std; typedef vector<int> vi; typedef pair<int,int> pii; typedef vector<pair<int,int> > vpii; typedef long long ll; template<typename T, typename U> inline void amin(T &x, U y) { if(y < x) x = y; } template<typename T, typename U> inline void amax(T &x, U y) { if(x < y) x = y; } template<int MOD> struct ModInt { static const int Mod = MOD; unsigned x; ModInt(): x(0) { } ModInt(signed sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } ModInt(signed long long sig) { int sigt = sig % MOD; if(sigt < 0) sigt += MOD; x = sigt; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if((x += that.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(ModInt that) { if((x += MOD - that.x) >= MOD) x -= MOD; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt inverse() const { long long a = x, b = MOD, u = 1, v = 0; while(b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return ModInt(u); } }; typedef ModInt<1000000007> mint; vector<mint> fact, factinv; void nCr_computeFactinv(int N) { N = min(N, mint::Mod - 1); fact.resize(N+1); factinv.resize(N+1); fact[0] = 1; rer(i, 1, N) fact[i] = fact[i-1] * i; factinv[N] = fact[N].inverse(); for(int i = N; i >= 1; i --) factinv[i-1] = factinv[i] * i; } vector<bool> isprime; vector<int> primes; void sieve(int n){ if((int)isprime.size() >= n+1) return; isprime.assign(n+1, true); isprime[0] = isprime[1] = false; int sqrtn = (int)(sqrt(n * 1.) + .5); for(int i = 2; i <= sqrtn; i ++) if(isprime[i]) { for(int j = i * i; j <= n; j += i) isprime[j] = false; } primes.clear(); for(int i = 2; i <= n; i ++) if(isprime[i]) primes.push_back(i); } vector<int> mobiusMu; void calcMobiusMu() { int n = (int)isprime.size() - 1; mobiusMu.assign(n+1, 1); for(int i = 2; i <= n; i ++) if(isprime[i]) { if((ll)i * i <= n) { for(int j = i * i; j <= n; j += i * i) mobiusMu[j] = 0; } for(int j = i; j <= n; j += i) mobiusMu[j] *= -1; } } typedef int FactorsInt; typedef vector<pair<FactorsInt,int> > Factors; void primeFactors(FactorsInt x, Factors &out_v) { out_v.clear(); int sqrtx = (int)(sqrt(x*1.) + 10.5); sieve(sqrtx); for(vector<int>::const_iterator p = primes.begin(); p != primes.end(); ++ p) { if(*p > sqrtx) break; if(x % *p == 0) { int t = 1; x /= *p; while(x % *p == 0) { t ++; x /= *p; } out_v.push_back(make_pair(*p, t)); } } if(x != 1) out_v.push_back(make_pair(x, 1)); } void getDivisors(FactorsInt x, vector<FactorsInt> &out_v) { Factors fs; primeFactors(x, fs); out_v.assign(1, 1); rep(i, fs.size()) { for(int j = (int)out_v.size()-1; j >= 0; j --) { FactorsInt x = out_v[j]; rep(k, fs[i].second) { x *= fs[i].first; out_v.push_back(x); } } } sort(all(out_v)); } vector<vi> allv; void brute(vi &C, vi &v) { bool emp = true; rep(i, C.size()) if(C[i] > 0) { emp = false; -- C[i]; v.push_back(i); brute(C, v); v.pop_back(); ++ C[i]; } if(emp) allv.pb(v); } int main() { int K; scanf("%d", &K); vector<int> C(K); rep(i, K) scanf("%d", &C[i]); int N = accumulate(all(C), 0); nCr_computeFactinv(N); sieve(N); calcMobiusMu(); vector<mint> cnts(N+1); rer(p, 1, N) if(N % p == 0) { bool ok = true; rep(i, K) ok &= C[i] % (N / p) == 0; if(!ok) continue; mint y = fact[p]; rep(i, K) y *= factinv[C[i] / (N / p)]; cnts[p] = y; } mint ans = 0; rer(p, 1, N) if(N % p == 0) { //ちょうどp個の回転で同じになるようなものを数える //= 最小periodがちょうどp //periodがpの約数であるのは数えられるので包除原理したい bool ok = true; rep(i, K) ok &= C[i] % (N / p) == 0; if(!ok) continue; vector<int> divs; getDivisors(p, divs); mint x = 0; each(d, divs) x += cnts[*d] * mobiusMu[p / *d]; ans += x * (N / p); } ans /= N; printf("%d\n", ans.get()); return 0; }