結果

問題 No.3106 Toptree is but what is not.
ユーザー NyaanNyaanNyaanNyaan
提出日時 2023-03-31 23:11:58
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 24,583 bytes
コンパイル時間 3,943 ms
コンパイル使用メモリ 295,196 KB
実行使用メモリ 29,724 KB
最終ジャッジ日時 2024-09-23 02:16:13
合計ジャッジ時間 6,697 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 *  date : 2023-03-31 23:11:53
 */

#define NDEBUG
using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  template <typename S>
  P &operator*=(const S &r) {
    first *= r, second *= r;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
  template <typename S>
  P operator*(const S &r) const {
    return P(*this) *= r;
  }
  P operator-() const { return P{-first, -second}; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N,F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

vector<int> mkiota(int n) {
  vector<int> ret(n);
  iota(begin(ret), end(ret), 0);
  return ret;
}

template <typename T>
T mkrev(const T &v) {
  T w{v};
  reverse(begin(w), end(w));
  return w;
}

template <typename T>
bool nxp(vector<T> &v) {
  return next_permutation(begin(v), end(v));
}

template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;

}  // namespace Nyaan

// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan

// inout
namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

istream &operator>>(istream &is, __int128_t &x) {
  string S;
  is >> S;
  x = 0;
  int flag = 0;
  for (auto &c : S) {
    if (c == '-') {
      flag = true;
      continue;
    }
    x *= 10;
    x += c - '0';
  }
  if (flag) x = -x;
  return is;
}

istream &operator>>(istream &is, __uint128_t &x) {
  string S;
  is >> S;
  x = 0;
  for (auto &c : S) {
    x *= 10;
    x += c - '0';
  }
  return is;
}

ostream &operator<<(ostream &os, __int128_t x) {
  if (x == 0) return os << 0;
  if (x < 0) os << '-', x = -x;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
  if (x == 0) return os << 0;
  string S;
  while (x) S.push_back('0' + x % 10), x /= 10;
  reverse(begin(S), end(S));
  return os << S;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan

// debug

#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif

#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif

// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)

namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }

//


struct bit_vector {
  using u32 = uint32_t;
  using i64 = int64_t;
  using u64 = uint64_t;

  static constexpr u32 w = 64;
  vector<u64> block;
  vector<u32> count;
  u32 n, zeros;

  inline u32 get(u32 i) const { return u32(block[i / w] >> (i % w)) & 1u; }
  inline void set(u32 i) { block[i / w] |= 1LL << (i % w); }

  bit_vector() {}
  bit_vector(int _n) { init(_n); }
  __attribute__((optimize("O3", "unroll-loops"))) void init(int _n) {
    n = zeros = _n;
    block.resize(n / w + 1, 0);
    count.resize(block.size(), 0);
  }

  __attribute__((target("popcnt"))) void build() {
    for (u32 i = 1; i < block.size(); ++i)
      count[i] = count[i - 1] + _mm_popcnt_u64(block[i - 1]);
    zeros = rank0(n);
  }

  inline u32 rank0(u32 i) const { return i - rank1(i); }
  __attribute__((target("bmi2,popcnt"))) inline u32 rank1(u32 i) const {
    return count[i / w] + _mm_popcnt_u64(_bzhi_u64(block[i / w], i % w));
  }
};

template <typename T>
struct WaveletMatrix {
  using u32 = uint32_t;
  using i64 = int64_t;
  using u64 = uint64_t;

  int n, lg;
  vector<T> a;
  vector<bit_vector> bv;

  WaveletMatrix(u32 _n) : n(max<u32>(_n, 1)), a(n) {}
  WaveletMatrix(const vector<T>& _a) : n(_a.size()), a(_a) { build(); }

  __attribute__((optimize("O3"))) void build() {
    lg = __lg(max<T>(*max_element(begin(a), end(a)), 1)) + 1;
    bv.assign(lg, n);
    vector<T> cur = a, nxt(n);
    for (int h = lg - 1; h >= 0; --h) {
      for (int i = 0; i < n; ++i)
        if ((cur[i] >> h) & 1) bv[h].set(i);
      bv[h].build();
      array<decltype(begin(nxt)), 2> it{begin(nxt), begin(nxt) + bv[h].zeros};
      for (int i = 0; i < n; ++i) *it[bv[h].get(i)]++ = cur[i];
      swap(cur, nxt);
    }
    return;
  }

  void set(u32 i, const T& x) { 
    assert(x >= 0);
    a[i] = x; 
  }

  inline pair<u32, u32> succ0(int l, int r, int h) const {
    return make_pair(bv[h].rank0(l), bv[h].rank0(r));
  }

  inline pair<u32, u32> succ1(int l, int r, int h) const {
    u32 l0 = bv[h].rank0(l);
    u32 r0 = bv[h].rank0(r);
    u32 zeros = bv[h].zeros;
    return make_pair(l + zeros - l0, r + zeros - r0);
  }

  // return a[k]
  T access(u32 k) const {
    T ret = 0;
    for (int h = lg - 1; h >= 0; --h) {
      u32 f = bv[h].get(k);
      ret |= f ? T(1) << h : 0;
      k = f ? bv[h].rank1(k) + bv[h].zeros : bv[h].rank0(k);
    }
    return ret;
  }

  // k-th (0-indexed) smallest number in a[l, r)
  T kth_smallest(u32 l, u32 r, u32 k) const {
    T res = 0;
    for (int h = lg - 1; h >= 0; --h) {
      u32 l0 = bv[h].rank0(l), r0 = bv[h].rank0(r);
      if (k < r0 - l0)
        l = l0, r = r0;
      else {
        k -= r0 - l0;
        res |= (T)1 << h;
        l += bv[h].zeros - l0;
        r += bv[h].zeros - r0;
      }
    }
    return res;
  }

  // k-th (0-indexed) largest number in a[l, r)
  T kth_largest(int l, int r, int k) {
    return kth_smallest(l, r, r - l - k - 1);
  }

  // count i s.t. (l <= i < r) && (v[i] < upper)
  int range_freq(int l, int r, T upper) {
    if (upper >= (T(1) << lg)) return r - l;
    int ret = 0;
    for (int h = lg - 1; h >= 0; --h) {
      bool f = (upper >> h) & 1;
      u32 l0 = bv[h].rank0(l), r0 = bv[h].rank0(r);
      if (f) {
        ret += r0 - l0;
        l += bv[h].zeros - l0;
        r += bv[h].zeros - r0;
      } else {
        l = l0;
        r = r0;
      }
    }
    return ret;
  }

  int range_freq(int l, int r, T lower, T upper) {
    return range_freq(l, r, upper) - range_freq(l, r, lower);
  }

  // max v[i] s.t. (l <= i < r) && (v[i] < upper)
  T prev_value(int l, int r, T upper) {
    int cnt = range_freq(l, r, upper);
    return cnt == 0 ? T(-1) : kth_smallest(l, r, cnt - 1);
  }

  // min v[i] s.t. (l <= i < r) && (lower <= v[i])
  T next_value(int l, int r, T lower) {
    int cnt = range_freq(l, r, lower);
    return cnt == r - l ? T(-1) : kth_smallest(l, r, cnt);
  }
};

/*
 * @brief Wavelet Matrix
 * @docs docs/data-structure-2d/wavelet-matrix.md
 */

//

template <typename T>
struct edge {
  int src, to;
  T cost;

  edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {}
  edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {}

  edge &operator=(const int &x) {
    to = x;
    return *this;
  }

  operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnweightedGraph = vector<vector<int>>;

// Input of (Unweighted) Graph
UnweightedGraph graph(int N, int M = -1, bool is_directed = false,
                      bool is_1origin = true) {
  UnweightedGraph g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    if (is_1origin) x--, y--;
    g[x].push_back(y);
    if (!is_directed) g[y].push_back(x);
  }
  return g;
}

// Input of Weighted Graph
template <typename T>
WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,
                        bool is_1origin = true) {
  WeightedGraph<T> g(N);
  if (M == -1) M = N - 1;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    cin >> c;
    if (is_1origin) x--, y--;
    g[x].emplace_back(x, y, c);
    if (!is_directed) g[y].emplace_back(y, x, c);
  }
  return g;
}

// Input of Edges
template <typename T>
Edges<T> esgraph(int N, int M, int is_weighted = true, bool is_1origin = true) {
  Edges<T> es;
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    if (is_weighted)
      cin >> c;
    else
      c = 1;
    if (is_1origin) x--, y--;
    es.emplace_back(x, y, c);
  }
  return es;
}

// Input of Adjacency Matrix
template <typename T>
vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,
                           bool is_directed = false, bool is_1origin = true) {
  vector<vector<T>> d(N, vector<T>(N, INF));
  for (int _ = 0; _ < M; _++) {
    int x, y;
    cin >> x >> y;
    T c;
    if (is_weighted)
      cin >> c;
    else
      c = 1;
    if (is_1origin) x--, y--;
    d[x][y] = c;
    if (!is_directed) d[y][x] = c;
  }
  return d;
}

/**
 * @brief グラフテンプレート
 * @docs docs/graph/graph-template.md
 */

//


template <typename G>
struct HeavyLightDecomposition {
 private:
  void dfs_sz(int cur) {
    size[cur] = 1;
    for (auto& dst : g[cur]) {
      if (dst == par[cur]) {
        if (g[cur].size() >= 2 && int(dst) == int(g[cur][0]))
          swap(g[cur][0], g[cur][1]);
        else
          continue;
      }
      depth[dst] = depth[cur] + 1;
      par[dst] = cur;
      dfs_sz(dst);
      size[cur] += size[dst];
      if (size[dst] > size[g[cur][0]]) {
        swap(dst, g[cur][0]);
      }
    }
  }

  void dfs_hld(int cur) {
    down[cur] = id++;
    for (auto dst : g[cur]) {
      if (dst == par[cur]) continue;
      nxt[dst] = (int(dst) == int(g[cur][0]) ? nxt[cur] : int(dst));
      dfs_hld(dst);
    }
    up[cur] = id;
  }

  // [u, v)
  vector<pair<int, int>> ascend(int u, int v) const {
    vector<pair<int, int>> res;
    while (nxt[u] != nxt[v]) {
      res.emplace_back(down[u], down[nxt[u]]);
      u = par[nxt[u]];
    }
    if (u != v) res.emplace_back(down[u], down[v] + 1);
    return res;
  }

  // (u, v]
  vector<pair<int, int>> descend(int u, int v) const {
    if (u == v) return {};
    if (nxt[u] == nxt[v]) return {{down[u] + 1, down[v]}};
    auto res = descend(u, par[nxt[v]]);
    res.emplace_back(down[nxt[v]], down[v]);
    return res;
  }

 public:
  G& g;
  int id;
  vector<int> size, depth, down, up, nxt, par;
  HeavyLightDecomposition(G& _g, int root = 0)
      : g(_g),
        id(0),
        size(g.size(), 0),
        depth(g.size(), 0),
        down(g.size(), -1),
        up(g.size(), -1),
        nxt(g.size(), root),
        par(g.size(), root) {
    dfs_sz(root);
    dfs_hld(root);
  }

  void build(int root) {
    dfs_sz(root);
    dfs_hld(root);
  }

  pair<int, int> idx(int i) const { return make_pair(down[i], up[i]); }

  template <typename F>
  void path_query(int u, int v, bool vertex, const F& f) {
    int l = lca(u, v);
    for (auto&& [a, b] : ascend(u, l)) {
      int s = a + 1, t = b;
      s > t ? f(t, s) : f(s, t);
    }
    if (vertex) f(down[l], down[l] + 1);
    for (auto&& [a, b] : descend(l, v)) {
      int s = a, t = b + 1;
      s > t ? f(t, s) : f(s, t);
    }
  }

  template <typename F>
  void path_noncommutative_query(int u, int v, bool vertex, const F& f) {
    int l = lca(u, v);
    for (auto&& [a, b] : ascend(u, l)) f(a + 1, b);
    if (vertex) f(down[l], down[l] + 1);
    for (auto&& [a, b] : descend(l, v)) f(a, b + 1);
  }

  template <typename F>
  void subtree_query(int u, bool vertex, const F& f) {
    f(down[u] + int(!vertex), up[u]);
  }

  int lca(int a, int b) {
    while (nxt[a] != nxt[b]) {
      if (down[a] < down[b]) swap(a, b);
      a = par[nxt[a]];
    }
    return depth[a] < depth[b] ? a : b;
  }

  int dist(int a, int b) { return depth[a] + depth[b] - depth[lca(a, b)] * 2; }
};

/**
 * @brief Heavy Light Decomposition(重軽分解)
 * @docs docs/tree/heavy-light-decomposition.md
 */


template <typename G>
struct Tree {
 private:
  G& g;
  int root;
  vector<vector<int>> bl;
  vector<int> dp;
  void build() {
    bl.resize(g.size());
    dp.resize(g.size());
    dfs(root, -1, 0);
  }

  void dfs(int c, int p, int _dp) {
    dp[c] = _dp;
    for (int i = p, x = -1; i != -1;) {
      bl[c].push_back(i);
      i = ++x < (int)bl[i].size() ? bl[i][x] : -1;
    }
    for (auto& d : g[c]) {
      if (d == p) continue;
      dfs(d, c, _dp + 1);
    }
  }

 public:
  Tree(G& _g, int _r = 0) : g(_g), root(_r) { build(); }

  int depth(int u) const { return dp[u]; }

  int par(int u) const { return u == root ? -1 : bl[u][0]; }

  int kth_ancestor(int u, int k) const {
    if (dp[u] < k) return -1;
    for (int i = k ? __lg(k) : -1; i >= 0; --i) {
      if ((k >> i) & 1) u = bl[u][i];
    }
    return u;
  }

  int nxt(int s, int t) const {
    if (dp[s] >= dp[t]) return par(s);
    int u = kth_ancestor(t, dp[t] - dp[s] - 1);
    return bl[u][0] == s ? u : bl[s][0];
  }

  vector<int> path(int s, int t) const {
    vector<int> pre, suf;
    while (dp[s] > dp[t]) {
      pre.push_back(s);
      s = bl[s][0];
    }
    while (dp[s] < dp[t]) {
      suf.push_back(t);
      t = bl[t][0];
    }
    while (s != t) {
      pre.push_back(s);
      suf.push_back(t);
      s = bl[s][0];
      t = bl[t][0];
    }
    pre.push_back(s);
    reverse(begin(suf), end(suf));
    copy(begin(suf), end(suf), back_inserter(pre));
    return pre;
  }

  int lca(int u, int v) {
    if (dp[u] != dp[v]) {
      if (dp[u] > dp[v]) swap(u, v);
      v = kth_ancestor(v, dp[v] - dp[u]);
    }
    if (u == v) return u;
    for (int i = __lg(dp[u]); i >= 0; --i) {
      if (dp[u] < (1 << i)) continue;
      if (bl[u][i] != bl[v][i]) u = bl[u][i], v = bl[v][i];
    }
    return bl[u][0];
  }
};

/**
 * @brief 木に対する一般的なクエリ
 * @docs docs/tree/tree-query.md
 */

using namespace Nyaan;

void q() {
  inl(N);
  auto g = graph(N, N - 1, false, false);
  {
    vl A(N);
    in(A);
  }

  HeavyLightDecomposition hld{g};
  Tree tree{g};

  vi init(N);
  rep(i, N) init[hld.down[i]] = i;
  WaveletMatrix wm{init};
  WaveletMatrix wm2{hld.down};
  auto invdown = mkinv(hld.down);

  ini(Q);
  ll a = 0, b = 0, xsum = 0;
  rep(q, Q) {
    {
      inl(A, B, K);
      // 手元だとオフラインにする 脳が壊れるので
      a = A;
      b = B;
#ifndef NyaanLocal
      a += xsum;
      b += xsum * 2;
      a %= N;
      b %= N;
#endif
    }
    inl(delta);
    int L = min(a, b);
    int R = max(a, b) + 1;

    trc(L, R);

    // サイズ 1 -> 例外処理
    if (L + 1 == R) {
      out(L);
      xsum += L, xsum %= N;
      continue;
    }

    // 答えが複数ある場合は lambda との距離で判定
    ll ans = -1, dist = inf;

    auto upd = [&](int x) {
      int d = hld.dist(delta, x);
      if (amin(dist, d)) ans = x;
    };

    /*
    if (L + 2 == R) {
      upd(L), upd(L + 1);

      auto f = [&](int u, int v) {
        if (u == v) return;
        // u-v パスのうち delta への最近点は?
        // -> LCA を見る
        int w = hld.lca(v, delta);
        // w がパス上に載っているか?
        if (hld.dist(u, w) + hld.dist(w, v) == hld.dist(u, v)) {
          upd(w);
        }
      };
      f(hld.lca(L, L + 1), L);
      f(hld.lca(L, L + 1), L + 1);

      out(ans);
      xsum += ans;
      xsum %= N;
      continue;
    }
    */

    // HLD 順の中央値付近について調べればよい
    int S = R - L;
    vi kouho;
    if (S % 2 == 0) {
      kouho.push_back(invdown[wm2.kth_smallest(L, R, S / 2 - 1)]);
      kouho.push_back(invdown[wm2.kth_smallest(L, R, S / 2)]);
    } else {
      kouho.push_back(invdown[wm2.kth_smallest(L, R, S / 2)]);
    }

    each(mh, kouho) {
      trc(mh);

      // 根から m_h へのパス上の頂点
      vp path;
      auto f = [&](int u, int v) { path.emplace_back(u, v); };
      hld.path_query(mh, 0, true, f);
      reverse(all(path));
      trc(path);

      // 根から辿る。部分木のサイズが t 以上である最も深い点は?
      auto calc = [&](int t) {
        pi res{-1, -1};
        int ok = 0, ng = sz(path);
        while (ok + 1 < ng) {
          int m = (ok + ng) / 2;
          int x = path[m].first;
          int i = invdown[x];
          int xd = hld.down[i];
          int xu = hld.up[i];
          int num = wm.range_freq(xd, xu, L, R);
          (num >= t ? ok : ng) = m;
        }
        res.first = ok;
        ok = path[res.first].first;
        ng = path[res.first].second;
        while (ok + 1 < ng) {
          int m = (ok + ng) / 2;
          int i = invdown[m];
          int xd = hld.down[i];
          int xu = hld.up[i];
          int num = wm.range_freq(xd, xu, L, R);
          (num >= t ? ok : ng) = m;
        }
        res.second = ok;
        return res;
      };

      int th = (S + 1) / 2;

      // 最も深い頂点は?
      pi deep = calc(th);

      // 部分木のサイズが th 以上になる最も浅い頂点は?

      pi shallow{-1, -1};
      // S が偶数の場合
      if (S % 2 == 0) {
        // th + 1 以上で最も深い点
        shallow = calc(th + 1);

        // shallow = deep ならば何もしない
        if (shallow != deep) {
          // 部分木のサイズの最大が S/2 ならば shallow は valid
          // それ以外は 1 個深い所に行く
          pi nxt = shallow;
          if (nxt.second + 1 == path[nxt.first].second) {
            assert(nxt.first + 1 != sz(path));
            nxt.first++;
            nxt.second = path[nxt.first].first;
          } else {
            nxt.second++;
          }
          int i = invdown[nxt.second];
          int nd = hld.down[i];
          int nu = hld.up[i];
          if (wm2.range_freq(nd, nu, L, R) <= S / 2) {
            // do nothing
          } else {
            shallow = nxt;
          }
        }
      } else {
        // 1 択
        shallow = deep;
      }

      trc(shallow);
      trc(deep);

      int u = invdown[shallow.second];
      int v = invdown[deep.second];

      assert(hld.depth[u] <= hld.depth[v]);
      upd(u), upd(v);

      // u-v パスのうち delta への最近点は?

      // -> LCA を見る
      int w = hld.lca(v, delta);
      // w がパス上に載っているか?
      if (hld.dist(u, w) + hld.dist(w, v) == hld.dist(u, v)) {
        upd(w);
      }
    }

    out(ans);
    xsum += ans;
    xsum %= N;
  }
}

void Nyaan::solve() {
  int t = 1;
  // in(t);
  while (t--) q();
}
0